Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Iranian, Spanish Scientists Find New Method to Produce NO2 Nanosensor

Abstract:
Researchers at Materials and Energy Research Center of Iran in association with Spanish researchers from University of Barcelona succeeded in the synthesis of nanosensors made of indium oxide (In2O3) nanoparticles through a novel alternative current electrophoresis deposition method.

Iranian, Spanish Scientists Find New Method to Produce NO2 Nanosensor

Tehran, Iran | Posted on August 8th, 2012

This method has better response and shorter time response in comparison with other existing methods, the researchers said.

Indium oxide is known as a semiconductor oxide, which is very appropriate for the identification of gases at low temperatures in comparison with other metal oxide semiconductors.

The researchers synthesized various layers of indium oxide (In2O3) nanoparticles through alternative current electrophoresis deposition at various frequencies. Next, they proposed the optimum conditions for the synthesis of such layers by taking into consideration the sensitivity of the layers. A frequency of 10 kHz was reported as the best and the optimum frequency for the synthesis of the sensors.

Then, they produced thick layers of indium oxide (In2O3) nanoparticles by using the optimum frequency in order to compare the properties of the synthesized nanosensor with those of the sensors produced through precipitation method. The comparison proved that the new nanosensor benefited from more functional layers. According to the report of the researchers, the newly synthesized nanosensor provides more space for the passage of the gas due to the presence of pores caused by the chain structure of the interconnected nanoparticles. This fact results in the more desirable response of the nanosensor in comparison with the other sensors.

Studies also showed that the new type of the nanosensor had a quicker response time for the reduction compared to the other type.

The research has been published in detail on 20 May 2012 in Sensors and Actuators B: Chemical, vol. 166-167, pp. 128-134.


####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Superconductor could be realized in a broken Lorenz invariant theory July 7th, 2015

New technique enables magnetic patterns to be mapped in 3-D July 7th, 2015

Crystal structure and magnetism -- new insight into the fundamentals of solid state physics: HZB team decodes relationship between magnetic interactions and the distortions in crystal structure within a geometrically 'frustrated' spinel system July 7th, 2015

Down to the quantum dot: Jülich researchers develop ultrahigh-resolution 3-D microscopy technique for electric fields July 7th, 2015

Sensors

Down to the quantum dot: Jülich researchers develop ultrahigh-resolution 3-D microscopy technique for electric fields July 7th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

New micro-supercapacitor structure inspired by the intricate design of leaves: A team of scientists in Korea has devised a new method for making a graphene film for supercapacitors July 2nd, 2015

Discoveries

Superconductor could be realized in a broken Lorenz invariant theory July 7th, 2015

New technique enables magnetic patterns to be mapped in 3-D July 7th, 2015

Crystal structure and magnetism -- new insight into the fundamentals of solid state physics: HZB team decodes relationship between magnetic interactions and the distortions in crystal structure within a geometrically 'frustrated' spinel system July 7th, 2015

Down to the quantum dot: Jülich researchers develop ultrahigh-resolution 3-D microscopy technique for electric fields July 7th, 2015

Announcements

Superconductor could be realized in a broken Lorenz invariant theory July 7th, 2015

New technique enables magnetic patterns to be mapped in 3-D July 7th, 2015

Crystal structure and magnetism -- new insight into the fundamentals of solid state physics: HZB team decodes relationship between magnetic interactions and the distortions in crystal structure within a geometrically 'frustrated' spinel system July 7th, 2015

Down to the quantum dot: Jülich researchers develop ultrahigh-resolution 3-D microscopy technique for electric fields July 7th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project