Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Antibacterial Nanoparticles Prove More Efficient than Gentamicin in Fighting Infections

Abstract:
A multidisciplinary and multinational research group consisted of researchers from the University of Tehran, Iran, University of Mons, Belgium, University of Groningen and University of Twente, the Netherlands, carefully investigated the antibacterial behavior of magnetic iron oxide nanoparticles and demonstrated their efficacy as biocompatible antibacterial agents.

Antibacterial Nanoparticles Prove More Efficient than Gentamicin in Fighting Infections

Tehran, Iran | Posted on August 7th, 2012

In order to overcome the shortcomings of the commonly prescribed antibiotics in the treatment of infections caused by implanted biomaterials, the researchers devised an external magnetic field to guide the mentioned nanoparticles towards the grown bacterial colonies through a targeted drug delivery approach. By doing so, a multiple-fold higher antibacterial activity, compared with gentamicin, was achieved.

"As the initial part of our research, we carried out a feasibility study on the use of SPOINs (superparamagnetic iron oxide nanoparticles) as bactericide agents. The idea was triggered by the fact that most of metal nanoparticles exhibit antibacterial characteristics. Although their applicability is hindered by their potential toxicities, SPOINs are found to kill only the bacteria and being harmless to human body cells," Dr. Shahriar Sharifi, member of the research group, explained.

"Bearing the special magnetic properties of the SPOINs in mind, we tried to direct these nanoparticles to the locations of the bacterial colonies by exerting an external magnetic field. In this way, we came up with considerably increased and deeper penetration of the nanoparticles into the formed biofilms. These diffused SPOINs later generate reactive oxygen species (ROS), thanks to their nanometric dimensions as small as 5 nm, which damage the bacterial cell walls resulting in their death." Dr. Sharifi said, explaining about the mechanism of antibacterial activity of the SPIONs.

The results of this research work have been published in detail in Acta Biomaterialia.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Nanomedicine

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Iranian Scientists Find Simple, Economic Method to Synthesize Antibacterial Nanoparticles July 2nd, 2015

Leti Announces Launch of First European Nanomedicine Characterisation Laboratory: Project Combines Expertise of 9 Partners in 8 Countries to Foster Nanomedicine Innovation and Facilitate Regulatory Approval July 1st, 2015

Discoveries

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Announcements

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Nanobiotechnology

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Engineering the world’s smallest nanocrystal July 2nd, 2015

Nanometric sensor designed to detect herbicides can help diagnose multiple sclerosis June 23rd, 2015

Newly-Developed Biosensor in Iran Detects Cocaine Addiction June 23rd, 2015

Research partnerships

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Producing spin-entangled electrons July 2nd, 2015

Harris & Harris Group Portfolio Company, AgBiome, Announces Partnership to Accelerate the Discovery of Next Generation Insect-Resistant Crops July 1st, 2015

Leti Announces Launch of First European Nanomedicine Characterisation Laboratory: Project Combines Expertise of 9 Partners in 8 Countries to Foster Nanomedicine Innovation and Facilitate Regulatory Approval July 1st, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project