Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > A KAIST research team has developed a high performance flexible solid state battery

This shows a blue LED emission operated by flexible solid state battery.

Credit: Korea Advanced Institute of Science and Technology
This shows a blue LED emission operated by flexible solid state battery.

Credit: Korea Advanced Institute of Science and Technology

Abstract:
The team of Professor Keon Jae Lee from the Department of Materials Science and Engineering, KAIST has developed a high performance flexible all-solid-state battery, an essential energy source for flexible displays (see paper in Nano Letters: "Bendable Inorganic Thin-Film Battery for Fully Flexible Electronic Systems").

Flexible battery turns on blue LED and maintains voltage during bending/unbending conditions.

A KAIST research team has developed a high performance flexible solid state battery

Daejeon, South Korea | Posted on August 6th, 2012

The technological advance of thin and light flexible display has encouraged the development of flexible batteries with a high power density and thermal stability. Although rechargeable lithium-ion batteries (LIB) have been regarded as a strong candidate for a high-performance flexible energy source, compliant electrodes for bendable LIBs are restricted to only a few materials (e.g., organic materials or nano/micro structured inorganic materials mixed with polymer binders). The performance of LIBs has not been sufficient either, thereby difficult to apply to flexible consumer electronics including rollable displays.

In addition, lithium transition metal oxides used as a cathode electrode have to be treated in high temperature (e.g., ~ 700 degrees for lithium cobalt oxide). However, it is not possible to anneal the metal oxides, an active material, at this high temperature on flexible polymer substrates.

Recently, Professor Lee's research team has developed a high performance flexible LIB structured with high density inorganic thin films by using a universal transfer approach. The thin film LIB fabricated on a mica substrate with high annealing temperature is transferred onto polymer substrates through a simple physical delamination of sacrificial substrates.

Professor Lee said, "The advent of a high performance flexible thin film battery will accelerate the development of next-generation fully flexible electronic systems in combination with existing flexible components such as display, memory, and LED."

The research team is currently investigating a laser lift-off technology to facilitate the mass production of flexible LIBs and 3D stacking structures to enhance charge density of batteries.

####

For more information, please click here

Contacts:
Lan Yoon

82-423-502-295

Copyright © The Korea Advanced Institute of Science and Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Cool Calculations for Cold Atoms: New theory of universal three-body encounters September 2nd, 2014

Accounting for Biological Aggregation in Heating and Imaging of Magnetic Nanoparticles September 2nd, 2014

Engineers develop new sensor to detect tiny individual nanoparticles September 2nd, 2014

Future solar panels September 2nd, 2014

Flexible Electronics

Copper shines as flexible conductor August 29th, 2014

Display technology/LEDs/SS Lighting/OLEDs

Copper shines as flexible conductor August 29th, 2014

Videos/Movies

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

The channel that relaxes DNA: Relaxing DNA strands by using nano-channels: Instructions for use August 20th, 2014

“Active” surfaces control what’s on them: Researchers develop treated surfaces that can actively control how fluids or particles move August 6th, 2014

Thin films

Picosun joins forces with IMEC for novel, industrial ALD applications August 25th, 2014

An Inkjet-Printed Field-Effect Transistor for Label-Free Biosensing August 11th, 2014

Discoveries

New synthesis method may shape future of nanostructures, clean energy: Findings advance efficient solar spliting of water into hydrogen fuel September 2nd, 2014

Accounting for Biological Aggregation in Heating and Imaging of Magnetic Nanoparticles September 2nd, 2014

Engineers develop new sensor to detect tiny individual nanoparticles September 2nd, 2014

Future solar panels September 2nd, 2014

Announcements

New synthesis method may shape future of nanostructures, clean energy: Findings advance efficient solar spliting of water into hydrogen fuel September 2nd, 2014

Accounting for Biological Aggregation in Heating and Imaging of Magnetic Nanoparticles September 2nd, 2014

Engineers develop new sensor to detect tiny individual nanoparticles September 2nd, 2014

Future solar panels September 2nd, 2014

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

Picosun joins forces with IMEC for novel, industrial ALD applications August 25th, 2014

Graphene may be key to leap in supercapacitor performance August 20th, 2014

Could hemp nanosheets topple graphene for making the ideal supercapacitor? August 12th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE