Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Penn Researchers Show New Way of Assembling Particles Into Complex Structures

Kathleen J. Stebe
Kathleen J. Stebe

Abstract:
Many recent advances in microtechnology and nanotechnology depend on microscopic spherical particles self-assembling into large-scale aggregates to form a relatively limited range of crystalline structures. Directed assembly is a new branch of this field, where scientists figure out how to make particles assemble to form a broad range of structures at given locations.

Penn Researchers Show New Way of Assembling Particles Into Complex Structures

Philadelphia, PA | Posted on August 5th, 2012

Current techniques for directed assembly typically use an applied field, such as an electric or magnetic field, to move particles and to assemble them into well-defined structures. Now, researchers at the University of Pennsylvania have identified a simple new method to direct particle assembly based only on surface tension and particle shape.

The research, led by Kathleen J. Stebe, professor in the Department of Chemical and Biomolecular Engineering and the school's Deputy Dean for Research, was performed by a team of researchers in her laboratory, Marcello Cavallaro Jr., Lorenzo Botto, Eric P. Lewandowski and Marisa Wang. It was published in the Proceedings of the National Academy of Sciences.

Their results rely on the simple fact that a liquid surface will tend to minimize its surface area.

"It's the same reason that surface tension makes a drop of water want to be a sphere," Stebe said. "But we can tune that phenomenon to do astonishing things."

Self-assembling spherical particles have been used to make new materials with unique optical and mechanical properties, but non-spherical, or anisotropic, particles may hold even greater promise. By having a definable directionality, the properties of the materials the particles make up can be altered based on their orientations.

In the study, Stebe's lab used cylindrical particles made out of a common polymer. When placed on the surface of a thin film of water, the cylinders produce a saddle-shaped deformation: the water's surface dips at each end of a particle and rises up along their sides.

The Stebe lab had previously demonstrated that this saddle-shape can be used to orient two cylindrical particles end-to-end. As the depressions at their ends come in contact, surface tension causes the area of the space between them to contract, bringing the ends together.

In the new study, instead of two particles interacting, particles interact with a stationary post. The post pokes through the water's surface, causing the surface to curve upward around it. The interaction between a particle's deformation and this curve is governed by the same phenomenon of surface tension shown in the earlier study; the particles move so as to make the surface area as small as possible.

"This means that as soon as the particles hit the surface of the water, they change their alignment and start moving rapidly uphill toward the post," Cavallaro said. "We were also able to predict the lines they would travel for three different post shapes."

By changing the cross-sectional shape of the posts, the researchers were able to show fine control over how the particles moved and oriented. A circular post attracted particles in straight lines, whereas an elliptical post drew particles to the elongated ends. A square post produced the most complex behavior, drawing particles strongly to the corners, leaving the sides open.

The lab's choice of particle shape and material was only to help the researchers observe the particles' orientation and position; any non-spherical particle, on any liquid-liquid or liquid-vapor surface, would be governed by the same principles and produce the same type of deformation. This makes this research particularly powerful: it does not depend on the particle having a certain shape or being made from a certain material.

Surfaces studded with strategically placed and shaped posts could direct and orient particles into almost any configuration. And because the mechanism behind the particles' movement is simply the surface curvature, their movement could be "programmed" by changing the arrangement of the posts or the shape of the interface.

"I could go in with needle, for example, and dynamically pull the surface up at different locations, or over different times," Stebe said.

"Very often when we think about using micro- or nanotechnology, we're not thinking about properties on that tiny scale: It's going to be the organized structure made from micro- or nanoparticles that's going to be useful, perhaps as a lens or a smart surface," she said. "This phenomenon could be used to make new structures by sending particles to certain locations. We could define paths and say ‘here's a docking site: go there' or ‘here's a spot where we want nothing; don't go there.'

"This is a clear demonstration of directed assembly. Like self-assembly, things come together from the bottom up, but here they come together exactly where we want them to."

The research was supported by the National Science Foundation.

####

For more information, please click here

Contacts:
Evan Lerner

215-573-6604

Copyright © University of Pennsylvania

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Videos/Movies

Researchers develop new way to manufacture nanofibers May 21st, 2015

Artificial photosynthesis: New, stable photocathode with great potential May 12th, 2015

Precision Automation Actuator Features Closed-Loop Force and Position Control May 7th, 2015

A better way to build DNA scaffolds: McGill researchers devise new technique to produce long, custom-designed DNA strands May 6th, 2015

Govt.-Legislation/Regulation/Funding/Policy

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

Nanotherapy effective in mice with multiple myeloma May 21st, 2015

Turn that defect upside down: Twin boundaries in lithium-ion batteries May 21st, 2015

Molecular Machines

UCLA nanoscientists are first to model atomic structures of three bacterial nanomachines: Cryo electron microscope enables scientists to explore the frontiers of targeted antibiotics April 21st, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Tiny bio-robot is a germ suited-up with graphene quantum dots March 24th, 2015

Molecular Nanotechnology

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

Feynman Prize Winners Announced! April 26th, 2015

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

UCLA nanoscientists are first to model atomic structures of three bacterial nanomachines: Cryo electron microscope enables scientists to explore the frontiers of targeted antibiotics April 21st, 2015

Self Assembly

Scientists Use Nanoscale Building Blocks and DNA 'Glue' to Shape 3D Superlattices: New approach to designing ordered composite materials for possible energy applications April 23rd, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Carnegie Mellon chemists create tiny gold nanoparticles that reflect nature's patterns April 9th, 2015

DWI scientists program the lifetime of self-assembled nanostructures April 9th, 2015

Discoveries

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Announcements

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project