Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Penn Researchers Show New Way of Assembling Particles Into Complex Structures

Kathleen J. Stebe
Kathleen J. Stebe

Abstract:
Many recent advances in microtechnology and nanotechnology depend on microscopic spherical particles self-assembling into large-scale aggregates to form a relatively limited range of crystalline structures. Directed assembly is a new branch of this field, where scientists figure out how to make particles assemble to form a broad range of structures at given locations.

Penn Researchers Show New Way of Assembling Particles Into Complex Structures

Philadelphia, PA | Posted on August 5th, 2012

Current techniques for directed assembly typically use an applied field, such as an electric or magnetic field, to move particles and to assemble them into well-defined structures. Now, researchers at the University of Pennsylvania have identified a simple new method to direct particle assembly based only on surface tension and particle shape.

The research, led by Kathleen J. Stebe, professor in the Department of Chemical and Biomolecular Engineering and the school's Deputy Dean for Research, was performed by a team of researchers in her laboratory, Marcello Cavallaro Jr., Lorenzo Botto, Eric P. Lewandowski and Marisa Wang. It was published in the Proceedings of the National Academy of Sciences.

Their results rely on the simple fact that a liquid surface will tend to minimize its surface area.

"It's the same reason that surface tension makes a drop of water want to be a sphere," Stebe said. "But we can tune that phenomenon to do astonishing things."

Self-assembling spherical particles have been used to make new materials with unique optical and mechanical properties, but non-spherical, or anisotropic, particles may hold even greater promise. By having a definable directionality, the properties of the materials the particles make up can be altered based on their orientations.

In the study, Stebe's lab used cylindrical particles made out of a common polymer. When placed on the surface of a thin film of water, the cylinders produce a saddle-shaped deformation: the water's surface dips at each end of a particle and rises up along their sides.

The Stebe lab had previously demonstrated that this saddle-shape can be used to orient two cylindrical particles end-to-end. As the depressions at their ends come in contact, surface tension causes the area of the space between them to contract, bringing the ends together.

In the new study, instead of two particles interacting, particles interact with a stationary post. The post pokes through the water's surface, causing the surface to curve upward around it. The interaction between a particle's deformation and this curve is governed by the same phenomenon of surface tension shown in the earlier study; the particles move so as to make the surface area as small as possible.

"This means that as soon as the particles hit the surface of the water, they change their alignment and start moving rapidly uphill toward the post," Cavallaro said. "We were also able to predict the lines they would travel for three different post shapes."

By changing the cross-sectional shape of the posts, the researchers were able to show fine control over how the particles moved and oriented. A circular post attracted particles in straight lines, whereas an elliptical post drew particles to the elongated ends. A square post produced the most complex behavior, drawing particles strongly to the corners, leaving the sides open.

The lab's choice of particle shape and material was only to help the researchers observe the particles' orientation and position; any non-spherical particle, on any liquid-liquid or liquid-vapor surface, would be governed by the same principles and produce the same type of deformation. This makes this research particularly powerful: it does not depend on the particle having a certain shape or being made from a certain material.

Surfaces studded with strategically placed and shaped posts could direct and orient particles into almost any configuration. And because the mechanism behind the particles' movement is simply the surface curvature, their movement could be "programmed" by changing the arrangement of the posts or the shape of the interface.

"I could go in with needle, for example, and dynamically pull the surface up at different locations, or over different times," Stebe said.

"Very often when we think about using micro- or nanotechnology, we're not thinking about properties on that tiny scale: It's going to be the organized structure made from micro- or nanoparticles that's going to be useful, perhaps as a lens or a smart surface," she said. "This phenomenon could be used to make new structures by sending particles to certain locations. We could define paths and say ‘here's a docking site: go there' or ‘here's a spot where we want nothing; don't go there.'

"This is a clear demonstration of directed assembly. Like self-assembly, things come together from the bottom up, but here they come together exactly where we want them to."

The research was supported by the National Science Foundation.

####

For more information, please click here

Contacts:
Evan Lerner

215-573-6604

Copyright © University of Pennsylvania

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Energy-efficient spin current can be controlled by magnetic field and temperature: SCMR effect simplifies the design of fundamental spintronic components August 20th, 2018

Color effects from transparent 3D printed nanostructures: New design tool automatically creates nanostructure 3D print templates for user-given colors Scientists present work at prestigious SIGGRAPH conference August 18th, 2018

UVA multidisciplinary engineering team designs technology for smart materials: The invention could lead to devices and manufactured goods, such as fabrics, that can dynamically regulate between thermally insulating and cooling August 17th, 2018

Smallest transistor worldwide switches current with a single atom in solid electrolyte: Milestone of energy efficiency in information technology -- Publication in Advanced Materials August 17th, 2018

Videos/Movies

Particles pull last drops of oil from well water: Rice University engineers find nanoscale solution to 'produced water' problem August 15th, 2018

Nanotube 'rebar' makes graphene twice as tough: Rice University scientists test material that shows promise for flexible electronics August 3rd, 2018

New sensor technology enables super-sensitive live monitoring of human biomolecules July 3rd, 2018

NIST Researchers Simulate Simple Logic for Nanofluidic Computing June 30th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Color effects from transparent 3D printed nanostructures: New design tool automatically creates nanostructure 3D print templates for user-given colors Scientists present work at prestigious SIGGRAPH conference August 18th, 2018

UVA multidisciplinary engineering team designs technology for smart materials: The invention could lead to devices and manufactured goods, such as fabrics, that can dynamically regulate between thermally insulating and cooling August 17th, 2018

Scientists turn to the quantum realm to improve energy transportation August 17th, 2018

Research brief: UMN researchers use green gold to rapidly detect and identify harmful bacteria August 15th, 2018

Molecular Machines

Biophysics -- lighting up DNA-based nanostructures April 25th, 2018

Tiny nanomachine successfully completes test drive: Researchers at the University of Bonn and the research institute Caesar build a one-wheeled vehicle out of DNA rings April 11th, 2018

Piecework at the nano assembly line: Electric fields drive nano-motors a 100,000 times faster than previous methods January 22nd, 2018

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

Molecular Nanotechnology

A molecular switch at the edge of graphene July 27th, 2018

Watching nanomaterials form in 4D: Novel technology allows researchers to see dynamic reactions as they happen at the nanoscale April 26th, 2018

Biophysics -- lighting up DNA-based nanostructures April 25th, 2018

Tiny nanomachine successfully completes test drive: Researchers at the University of Bonn and the research institute Caesar build a one-wheeled vehicle out of DNA rings April 11th, 2018

Self Assembly

DNA drives design principles for lighter, thinner optical displays: Lighter gold nanoparticles could replace thicker, heavier layered polymers used in displays’ back-reflectors June 27th, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Self-assembling 3D battery would charge in seconds May 22nd, 2018

Engineered polymer membranes could be new option for water treatment May 6th, 2018

Discoveries

Energy-efficient spin current can be controlled by magnetic field and temperature: SCMR effect simplifies the design of fundamental spintronic components August 20th, 2018

Color effects from transparent 3D printed nanostructures: New design tool automatically creates nanostructure 3D print templates for user-given colors Scientists present work at prestigious SIGGRAPH conference August 18th, 2018

UVA multidisciplinary engineering team designs technology for smart materials: The invention could lead to devices and manufactured goods, such as fabrics, that can dynamically regulate between thermally insulating and cooling August 17th, 2018

Smallest transistor worldwide switches current with a single atom in solid electrolyte: Milestone of energy efficiency in information technology -- Publication in Advanced Materials August 17th, 2018

Announcements

Energy-efficient spin current can be controlled by magnetic field and temperature: SCMR effect simplifies the design of fundamental spintronic components August 20th, 2018

Color effects from transparent 3D printed nanostructures: New design tool automatically creates nanostructure 3D print templates for user-given colors Scientists present work at prestigious SIGGRAPH conference August 18th, 2018

UVA multidisciplinary engineering team designs technology for smart materials: The invention could lead to devices and manufactured goods, such as fabrics, that can dynamically regulate between thermally insulating and cooling August 17th, 2018

Smallest transistor worldwide switches current with a single atom in solid electrolyte: Milestone of energy efficiency in information technology -- Publication in Advanced Materials August 17th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project