Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Hierarchical Microlattice Structure Increase Specific Strength

Photo by Dan Little  HRL Laboratories, LLC
Photo by Dan Little HRL Laboratories, LLC

Abstract:
HRL Laboratories in Malibu, California/ USA is a corporate research-and-development laboratory owned by The Boeing Company and General Motors specializing in research into sensors and materials, information and systems sciences, applied electromagnetics, and microelectronics. In November 2011 HLR attracted worldwide attention by announcing that they had developed the world's lightest material with a density of 0.9 mg/cc. Using an innovative fabrication process, researchers created a microlattice structure of interconnected hollow tubes with a wall thickness of 100 nanometers.

Hierarchical Microlattice Structure Increase Specific Strength

Germany | Posted on August 2nd, 2012

Recently, Robert E. Doty, Joanna A. Kolodziejska and Alan J. Jacobsen from HLR adapted and extended the process of rapid formation of a polymer microlattice to the fabrication of a hierarchical polymer microlattice structure. The hierarchical microlattice is the result of superposition of two constituent microlattice structures. The constituent microlattice structures are made of the same photopolymer material, and represent two similar, but not identical, architectures.

Compression experiments suggest that the introduction of hierarchy increase the specific plateau stress. The specific peak strength of the unconstrained hierarchical microlattice is roughly equal to that of the large-scale constituent lattice with a fixed node constraint and is approximately 50% higher than the constrained small-scale microlattice. The energy absorbed during compression of the hierarchical structures was equal to or greater than the sum of the energy absorbed by the small and large-scale lattice structures with the same constraint. The researchers conclude this is a result of the additional constraint between the small and large unit cell lattice structures that comprise the hierarchical structure.

In addition to the hierarchical microlattice or the microlattice structure of interconnected hollow tubes, many other lattice-like topologies are possible. Possible variations in cellular architecture, including the relative size scales of the constituent lattices, relative densities, strut angles, and lattice symmetry, offer the opportunity to enlarge the design space for tailored lattice-structured materials.

####

For more information, please click here

Copyright © Wiley-VCH Materials Science Journals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

Leading bugs to the death chamber: A kinder face of cholesterol February 8th, 2016

From allergens to anodes: Pollen derived battery electrodes February 8th, 2016

Discoveries

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

Leading bugs to the death chamber: A kinder face of cholesterol February 8th, 2016

The iron stepping stones to better wearable tech without semiconductors February 8th, 2016

Materials/Metamaterials

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

Graphene is strong, but is it tough? Berkeley Lab scientists find that polycrystalline graphene is not very resistant to fracture February 7th, 2016

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Discovery of the specific properties of graphite-based carbon materials February 6th, 2016

Announcements

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

Leading bugs to the death chamber: A kinder face of cholesterol February 8th, 2016

From allergens to anodes: Pollen derived battery electrodes February 8th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic