Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Decades-old mystery of buckyballs craked by team led by FSU, MagLab researchers

An artist’s representation of fullerene cage growth via carbon absorption from surrounding hot gases. Some of the cages contain lanthanum metal atoms. (Image courtesy National Science Foundation)
An artist’s representation of fullerene cage growth via carbon absorption from surrounding hot gases. Some of the cages contain lanthanum metal atoms. (Image courtesy National Science Foundation)

Abstract:
After exploring for 25 years, scientists have solved the question of how the iconic family of caged-carbon molecules known as buckyballs form.

The results from Florida State University and the National Science Foundation-supported National High Magnetic Field Laboratory, or MagLab, in Tallahassee, Fla., shed fundamental light on the self-assembly of carbon networks. The findings should have important implications for carbon nanotechnology and provide insight into the origin of space fullerenes, which are found throughout the universe.

Decades-old mystery of buckyballs craked by team led by FSU, MagLab researchers

Tallahassee, /fl | Posted on July 31st, 2012

Many people know the buckyball, also known by scientists as buckminsterfullerene, carbon 60 or C60, from the covers of their school chemistry textbooks. Indeed, the molecule represents the iconic image of "chemistry." But how these often highly symmetrical, beautiful molecules with fascinating properties form in the first place has been a mystery for a quarter-century. Despite worldwide investigation since the 1985 discovery of C60, buckminsterfullerene and other, non-spherical C60 molecules — known collectively as fullerenes — have kept their secrets. How? They're born under highly energetic conditions and grow ultra-fast, making them difficult to analyze.

"The difficulty with fullerene formation is that the process is literally over in a flash — it's next to impossible to see how the magic trick of their growth was performed," said Paul Dunk, a doctoral student in chemistry and biochemistry at Florida State and lead author of the work.

In the study, published in the peer-reviewed journal Nature Communications, the scientists describe their ingenious approach to testing how fullerenes grow.

"We started with a paste of pre-existing fullerene molecules mixed with carbon and helium, shot it with a laser, and instead of destroying the fullerenes we were surprised to find they'd actually grown," they wrote. The fullerenes were able to absorb and incorporate carbon from the surrounding gas.

By using fullerenes that contained heavy metal atoms in their centers, the scientists showed that the carbon cages remained closed throughout the process.

"If the cages grew by splitting open, we would have lost the metal atoms, but they always stayed locked inside," Dunk noted.

The researchers worked with a team of MagLab chemists using the lab's 9.4-tesla Fourier transform ion cyclotron resonance mass spectrometer to analyze the dozens of molecular species produced when they shot the fullerene paste with the laser. The instrument works by separating molecules according to their masses, allowing the researchers to identify the types and numbers of atoms in each molecule. The process is used for applications as diverse as identifying oil spills, biomarkers and protein structures.

The buckyball research results will be important for understanding fullerene formation in extraterrestrial environments. Recent reports by NASA showed that crystals of C60 are in orbit around distant suns. This suggests that fullerenes may be more common in the universe than previously thought.

"The results of our study will surely be extremely valuable in deciphering fullerene formation in extraterrestrial environments," said Florida State's Harry Kroto, a Nobel Prize winner for the discovery of C60 and co-author of the current study.

The results also provide fundamental insight into self-assembly of other technologically important carbon nanomaterials such as nanotubes and the new wunderkind of the carbon family, graphene.

Other research collaborators included the CNRS Institute of Materials in France and Nagoya University in Japan.

####

For more information, please click here

Contacts:
Elizabeth Bettendorf
News/Research Writer
Office: (850) 644-5929

Copyright © Florida State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Graphene is strong, but is it tough? Berkeley Lab scientists find that polycrystalline graphene is not very resistant to fracture February 7th, 2016

Lithium battery catalyst found to harm key soil microorganism February 7th, 2016

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Graphene/ Graphite

Graphene is strong, but is it tough? Berkeley Lab scientists find that polycrystalline graphene is not very resistant to fracture February 7th, 2016

Laboratories

Graphene is strong, but is it tough? Berkeley Lab scientists find that polycrystalline graphene is not very resistant to fracture February 7th, 2016

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Lithium battery catalyst found to harm key soil microorganism February 7th, 2016

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Self Assembly

New type of nanowires, built with natural gas heating: UNIST research team developed a new simple nanowire manufacturing technique February 1st, 2016

Researchers develop completely new kind of polymer: Hybrid polymers could lead to new concepts in self-repairing materials, drug delivery and artificial muscles January 30th, 2016

Polymer nanowires that assemble in perpendicular layers could offer route to tinier chip components January 23rd, 2016

Nanodevice, build thyself: Researchers in Germany studied how a multitude of electronic interactions govern the encounter between a molecule called porphine and copper and silver surfaces January 18th, 2016

Nanotubes/Buckyballs/Fullerenes

Nano-coating makes coaxial cables lighter: Rice University scientists replace metal with carbon nanotubes for aerospace use January 28th, 2016

Scientists provide new guideline for synthesis of fullerene electron acceptors January 28th, 2016

Nanostructural Changes in Solar Cells to Increase Their Efficiency January 28th, 2016

FLEXcon shares insights on developments and safety guidelines in nanotechnology: FLEXcon hosted New England Nanotechnology Association event, discussing latest industry activities and innovations January 25th, 2016

Discoveries

Graphene is strong, but is it tough? Berkeley Lab scientists find that polycrystalline graphene is not very resistant to fracture February 7th, 2016

Lithium battery catalyst found to harm key soil microorganism February 7th, 2016

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Discovery of the specific properties of graphite-based carbon materials February 6th, 2016

Announcements

Graphene is strong, but is it tough? Berkeley Lab scientists find that polycrystalline graphene is not very resistant to fracture February 7th, 2016

Lithium battery catalyst found to harm key soil microorganism February 7th, 2016

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Discovery of the specific properties of graphite-based carbon materials February 6th, 2016

Tools

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Cornell researchers create first self-assembled superconductor February 1st, 2016

New record in nanoelectronics at ultralow temperatures January 28th, 2016

LC.300 Series Nanopositioning Controller from nPoint January 28th, 2016

Photonics/Optics/Lasers

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

Scientists guide gold nanoparticles to form 'diamond' superlattices: DNA scaffolds cage and coax nanoparticles into position to form crystalline arrangements that mimic the atomic structure of diamond February 4th, 2016

Nature Materials: Smallest lattice structure worldwide: 3-D lattice with glassy carbon struts and braces of less than 200 nm in diameter has higher specific strength than most solids February 3rd, 2016

Silicon-based metamaterials could bring photonic circuits February 1st, 2016

Research partnerships

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Polar vortices observed in ferroelectric: New state of matter holds promise for ultracompact data storage and processing February 4th, 2016

Spin dynamics in an atomically thin semi-conductor February 1st, 2016

Graphene shown to safely interact with neurons in the brain January 31st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic