Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Navy Scientists Demonstrate Breakthrough in Tunnel Barrier Technology

Diagram (left) of the graphene-based magnetic tunnel junction, where a single atom thick layer of carbon atoms in a honeycomb lattice separates two magnetic metal films (cobalt and permalloy). The magnetizations of the films can be aligned parallel or antiparallel, resulting in a change in resistance for current flowing through the structure, called the tunnel magnetoresistance (TMR). The plot (right) shows the TMR as an applied magnetic field changes the relative orientation of the magnetizations — the TMR persists well above room temperature.
(U.S. Naval Research Laboratory)
Diagram (left) of the graphene-based magnetic tunnel junction, where a single atom thick layer of carbon atoms in a honeycomb lattice separates two magnetic metal films (cobalt and permalloy). The magnetizations of the films can be aligned parallel or antiparallel, resulting in a change in resistance for current flowing through the structure, called the tunnel magnetoresistance (TMR). The plot (right) shows the TMR as an applied magnetic field changes the relative orientation of the magnetizations — the TMR persists well above room temperature.

(U.S. Naval Research Laboratory)

Abstract:
Scientists at the Naval Research Laboratory have demonstrated, for the first time, the use of graphene as a tunnel barrier — an electrically insulating barrier between two conducting materials through which electrons tunnel quantum mechanically. They report fabrication of magnetic tunnel junctions using graphene, a single atom thick sheet of carbon atoms arranged in a honeycomb lattice, between two ferromagnetic metal layers in a fully scalable photolithographic process. Their results demonstrate that single-layer graphene can function as an effective tunnel barrier for both charge and spin-based devices, and enable realization of more complex graphene-based devices for highly functional nanoscale circuits, such as tunnel transistors, non-volatile magnetic memory and reprogrammable spin logic. These research results are published in the online issue of Nano Letters (14 May 2012; DOI: 10.1021/nl3007616).

Navy Scientists Demonstrate Breakthrough in Tunnel Barrier Technology

Washington, DC | Posted on July 31st, 2012

The research initiates a "paradigm shift in tunnel barrier technology for magnetic tunnel junctions (MTJs) used for advanced sensors, memory and logic," explains NRL's Dr. Berend Jonker. Graphene has been the focus of intense research activity because of its remarkable electronic and mechanical properties. In the past, researchers focused on developing graphene as a conductor, or perhaps a semiconductor, where the current flows in-plane parallel to the carbon honeycomb sheet. In contrast, the NRL researchers show that graphene serves as an excellent tunnel barrier when current is directed perpendicular to the plane, and in fact, also preserves the spin polarization of the tunneling current.

Tunnel barriers are the basis for many electronic (charge-based) and spintronic (spin-based) device structures. Fabrication of ultra-thin and defect-free barriers is an ongoing challenge in materials science. Typical tunnel barriers are based on metal oxides (e.g. aluminum oxide or magnesium oxide), and issues such as non-uniform thicknesses, pinholes, defects and trapped charge compromise their performance and reliability. Such oxide tunnel barriers have several limitations which hinder future performance. For example, they have high resistance-area (RA) products which results in higher power consumption and local heating; they allow interdiffusion at the interfaces, which reduces their performance and can lead to catastrophic failure; and their thickness is generally non-uniform, resulting in "hot spots" in the current transport. In contrast, Dr. Jonker explains, the inherent material properties of graphene make it an ideal tunnel barrier. Graphene is chemically inert and impervious to diffusion even at high temperatures. The atomic thickness of graphene represents the ultimate in tunnel barrier scaling for the lowest possible RA product, lowest power consumption and fastest switching speed.

This discovery by NRL researchers is significant because MTJs are widely utilized as read heads in the hard disk drive found in every computer, and as memory elements in non-volatile magnetic random access memory (MRAM) which is rapidly emerging as a universal memory replacement for the many varieties of conventional semiconductor-based memory. They are also considered to be lead contenders as reprogrammable, non-volatile elements for a universal logic block.

Although there has been significant progress, the emerging generation of MTJ-based MRAM relies upon spin-transfer torque switching, and is severely limited by the unacceptably high current densities required to switch the logic state of the cell. The accompanying issues of power consumption and thermal dissipation prevent scaling to higher densities and operation at typical CMOS voltages. The 2011 International Technology Roadmap for Semiconductors (ITRS) states that "all of the existing forms of nonvolatile memory face limitations based on material properties. Success will hinge on finding and developing alternative materials and/or developing alternative emerging technologies ... development of electrically accessible non-volatile memory with high speed and high density would initiate a revolution in computer architecture ... and provide a significant increase in information throughput beyond the traditional benefits of scaling when fully realized for nanoscale CMOS devices" (ITRS 2011 Executive Summary, p28; and Emerging Research Devices, p. 4).

NRL researchers believe that the graphene-based magnetic tunnel junctions they have demonstrated will eclipse the performance and ease of fabrication of existing oxide technology. These graphene-based MTJs would be a breakthrough for nascent spin-based technologies like MRAM and spin logic, and enable the electrically accessible non-volatile memory required to initiate a revolution in computer architecture. These results also pave the way for utilization of other two-dimensional materials such as hexagonal boron nitride for similar applications.

The NRL research team includes Dr. Enrique Cobas, Dr. Adam Friedman, Dr. Olaf van 't Erve, and Dr. Berend Jonker from the Materials Science and Technology Division, and Dr. Jeremy Robinson from the Electronics Science and Technology Division.

####

About U.S. Naval Research Laboratory
The U.S. Naval Research Laboratory is the Navy's full-spectrum corporate laboratory, conducting a broadly based multidisciplinary program of scientific research and advanced technological development. The Laboratory, with a total complement of nearly 2,500 personnel, is located in southwest Washington, D.C., with other major sites at the Stennis Space Center, Miss., and Monterey, Calif. NRL has served the Navy and the nation for over 85 years and continues to meet the complex technological challenges of today's world. For more information, visit the NRL homepage or join the conversation on Twitter, Facebook, and YouTube.

For more information, please click here

Contacts:
The NRL Public Affairs Office
202-767-2541

Copyright © U.S. Naval Research Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

NRL homepage

Related News Press

Graphene/ Graphite

Graphene nanotubes outperform ammonium salts and carbon black in PU applications September 11th, 2018

Carbon in color: First-ever colored thin films of nanotubes created: A method developed at Aalto University, Finland, can produce large quantities of pristine single-walled carbon nanotubes in select shades of the rainbow; the secret is a fine-tuned fabrication process -- and a s August 29th, 2018

A human enzyme can biodegrade graphene August 28th, 2018

A Novel Graphene Quantum Dot Structure Takes the Cake August 24th, 2018

Laboratories

Cannibalistic materials feed on themselves to grow new nanostructures September 1st, 2018

Openings/New facilities/Groundbreaking/Expansion

NanoBio Announces Corporate Name Change to BlueWillow Biologics and Closes $10M Series A Financing: Move Reflects Focus on Advancing Several Intranasal Vaccines to Human Studies May 9th, 2018

Aculon Expands NanoProof® Product Line for Electronics Waterproofing Technology: With growing market opportunities Aculon Launches NanoProof® 8 with Push Through Connectivity™ and NanoProof® DAB a syringe application May 30th, 2017

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

GLOBALFOUNDRIES Expands to Meet Worldwide Customer Demand: Company invests for capacity growth in the United States, Germany, China and Singapore February 10th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Researchers develop microbubble scrubber to destroy dangerous biofilms September 19th, 2018

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

Could a demon help to create a quantum computer? Physicists implement a version of Maxwell's famous thought experiment for reducing entropy September 5th, 2018

Chip Technology

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

New devices based on rust could reduce excess heat in computers: Physicists explore long-distance information transmission in antiferromagnetic iron oxide September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

How a tetrahedral substance can be more symmetrical than a spherical atom: A new type of symmetry September 14th, 2018

Memory Technology

Energy-efficient spin current can be controlled by magnetic field and temperature: SCMR effect simplifies the design of fundamental spintronic components August 20th, 2018

Leti & CMP Announce World’s First Multi-Project-Wafer Service with Integrated Silicon OxRAM: Oxide-Based Resistive Ram Memory Platform Development for Backend Memories To Offer Non-Volatility Associated with Embedded Designs August 2nd, 2018

A molecular switch at the edge of graphene July 27th, 2018

Magnetic skyrmions: Not the only ones of their class: Jülich researchers discover a new type of magnetic particle-like object for data storage devices of the future June 28th, 2018

Discoveries

NUS researchers invent new test kit for quick, accurate and low-cost screening of diseases: Test results are denoted by a color change and could be further analyzed by a smartphone app, making it attractive as a point-of-care diagnostic device September 19th, 2018

Silver nanoparticles are toxic for aquatic organisms: A research team at the UPV/EHU-University of the Basque Country has analysed how zebrafish are affected in the long term by exposure to silver particles September 19th, 2018

Researchers develop microbubble scrubber to destroy dangerous biofilms September 19th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

Announcements

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

NUS researchers invent new test kit for quick, accurate and low-cost screening of diseases: Test results are denoted by a color change and could be further analyzed by a smartphone app, making it attractive as a point-of-care diagnostic device September 19th, 2018

Silver nanoparticles are toxic for aquatic organisms: A research team at the UPV/EHU-University of the Basque Country has analysed how zebrafish are affected in the long term by exposure to silver particles September 19th, 2018

Leti Announces EU Project to Develop Powerful, Inexpensive Sensors with Photonic Integrated Circuits: REDFINCH Members Initially Targeting Applications for Gas Detection and Analysis For Refineries & Petrochemical Industry and Protein Analysis for Dairy Industry September 19th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project