Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > More Insights into Water Oxidation in Artificial Photosynthesis

Abstract:
Iranian researchers at the Institute for Advanced Studies in Basic Sciences (IASBS) in Zanjan city managed to carry out a comprehensive investigation to identify nanosized manganese oxides as the active catalysts for water oxidation in the reaction of some manganese complexes.

More Insights into Water Oxidation in Artificial Photosynthesis

Tehran, Iran | Posted on July 31st, 2012

The artificial photosynthesis has been a subject of intense scholarly interest during the recent years with the objective of creating useful materials or solar energy storage through a smart inspiration from the natural photosynthesis process. The results of the conducted research at IASBS have revealed that nano-metric manganese oxides, which are yielded through the decomposition of manganese complexes, act as active species in the water oxidation process.

"By applying a number of common analysis techniques, we came to find some similarities in reactions of different manganese complexes with cerium (IV) ammonium nitrate which is a well-known and popular oxidizing agent. Further studies led us to conclude the presence of a special type of nano-dimensioned manganese oxide in the reactions of a number of complexes within the water oxidation process. Briefly put forth, we postulate that these complexes break down initially to form special manganese oxide species which subsequently take part in the water oxidation process by a unique mechanism," Dr. Mohammad Mahdi Najafpour, a member of the research group, explained.

The results of this research shed light on understanding the mechanism of water oxidation and enable better design of water oxidizing catalysts. In addition, other researchers may find the mentioned work to their interest as it gives novel and useful information on choice of the compound and the water oxidation mechanism in the presence of manganese complexes.

An elaborate report discussing the details of this research work is due to appear in Dalton Transactions (DOI:10.1039/C2DT30965C) soon this year.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Chemistry

A new way to display the 3-D structure of molecules: Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples August 21st, 2016

Researchers watch catalysts at work August 19th, 2016

Pokhara, the second largest city of Nepal, to host its first ever International Meeting on Material Sciences and Engineering August 15th, 2016

'Liquid fingerprinting' technique instantly identifies unknown liquids: Ability to instantly identify unknown liquids in the field could aid first responders, improve plant safety August 4th, 2016

Discoveries

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Nanofur for oil spill cleanup: Materials researchers learn from aquatic ferns: Hairy plant leaves are highly oil-absorbing / publication in bioinspiration & biomimetics / video on absorption capacity August 25th, 2016

Unraveling the crystal structure of a -70 Celsius superconductor, a world first: Significant advancement in the realization of room-temperature superconductors August 25th, 2016

Announcements

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Energy

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Solar/Photovoltaic

Let's roll: Material for polymer solar cells may lend itself to large-area processing: 'Sweet spot' for mass-producing polymer solar cells may be far larger than dictated by the conventional wisdom August 12th, 2016

NREL technique leads to improved perovskite solar cells August 11th, 2016

Making a solar energy conversion breakthrough with help from a ferroelectrics pioneer: Philadelphia-based team shows how a ferroelectric insulator can surpass shockley-queisser limit August 9th, 2016

Tiny high-performance solar cells turn power generation sideways August 5th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic