Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > A giant step in a miniature world: UZH researcher measures the electrical charge of nano particles

This is a cross-section through two chip-sized glass plates in which a nano particle is trapped in an energy hole (or “potential well” to use the scientific term). The colored fields show the different charges in the electrostatic field. The red zone signifies a very low charge, while the blue edges have a strong charge.

Credit: Picture: University of Zurich
This is a cross-section through two chip-sized glass plates in which a nano particle is trapped in an energy hole (or “potential well” to use the scientific term). The colored fields show the different charges in the electrostatic field. The red zone signifies a very low charge, while the blue edges have a strong charge.

Credit: Picture: University of Zurich

Abstract:
In order to observe the individual particles in a solution, Prof. Madhavi Krishnan and her co-workers «entice» each particle into an «electrostatic trap». It works like this: between two glass plates the size of a chip, the researchers create thousands of round energy holes. The trick is that these holes have just a weak electrostatic charge. The scientists than add a drop of the solution to the plates, whereupon each particle falls into an energy hole and remains trapped there. But the particles do not remain motionless in their trap. Instead, molecules in the solution collide with them continuously, causing the particles to move in a circular motion. «We measure these movements, and are then able to determine the charge of each individual particle», explains Prof. Madhavi Krishnan.

A giant step in a miniature world: UZH researcher measures the electrical charge of nano particles

Zurich, Switzerland | Posted on July 30th, 2012

Put simply, particles with just a small charge make large circular movements in their traps, while those with a high charge move in small circles. This phenomenon can be compared to that of a light-weight ball which, when thrown, travels further than a heavy one. The US physicist Robert A. Millikan used a similar method 100 years ago in his oil drop experiment to determine the velocity of electrically charged oil drops. In 1923, he received the Nobel Prize in physics in recognition of his achievements. «But he examined the drops in a vacuum», Prof. Krishnan explains. «We on the other hand are examining nano particles in a solution which itself influences the properties of the particles».

Electrostatic charge of «nano drugs packages»

For all solutions manufactured industrially, the electrical charge of the nano particles contained therein is also of primary interest, because it is the electrical charge that allows a fluid solution to remain stable and not to develop a lumpy consistency. «With our new method, we get a picture of the entire suspension along with all of the particles contained in it», emphasizes Prof. Madhavi Krishnan. A suspension is a fluid in which miniscule particles or drops are finely distributed, for example in milk, blood, various paints, cosmetics, vaccines and numerous pharmaceuticals. «The charge of the particles plays a major role in this», the Zurich-based scientist tells us.

One example is the manufacture of medicines that have to be administered in precise doses over a longer period using drug-delivery systems. In this context, nano particles act as «packages» that transport the drugs to where they need to take effect. Very often, it is their electrical charge that allows them to pass through tissue and cell membranes in the body unobstructed and so to take effect. «That's why it is so important to be able to measure their charge. So far most of the results obtained have been imprecise», the researcher tells us.

«The new method allows us to even measure in real-time a change in the charge of a single entity», adds Prof. Madhavi Krishnan. «This is particularly exciting for basic research and has never before been possible». This is because changes in charge play a role in all bodily reactions, whether in proteins, large molecules such as the DNA double helix, where genetic make-up is encoded, or cell organelles. «We're examining how material works in the field of millionths of a millimeter».

####

For more information, please click here

Contacts:
Prof. Dr. Madhavi Krishnan
Universität Zürich
Physikalisch-chemisches Institut
Phone: +41 44 635 44 65
madhavi.krishnan@ uzh.ch

Copyright © University of Zurich

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Literature: Mojarad, N, and Krishnan, M., Measuring the size and charge of single nanoscale objects in solution using an electrostatic fluidic trap. Nature Nanotechnology (2012)

Related News Press

News and information

SEMATECH to Showcase Innovation and Advances in Manufacturing at SEMICON Japan 2014: SEMATECH experts will share the latest techniques, emerging trends and best practices in advanced manufacturing strategies and methodologies November 26th, 2014

Australian startup creates world’s first 100% cotton hydrophobic T-Shirts November 26th, 2014

The mysterious 'action at a distance' between liquid containers November 26th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Imaging

Renishaw receives Queen's Award for spectroscopy developments November 25th, 2014

A*STAR SIMTech wins international award for breaking new ground in actuators: SIMTech invention can be used in an array of industries, and is critical for next generation ultra-precision systems November 24th, 2014

Professional AFM Images with a Three Step Click SmartScan by Park Systems Revolutionizes Atomic Force Microscopy by Automatizing the Imaging Process November 24th, 2014

Nanomedicine

Vegetable oil ingredient key to destroying gastric disease bacteria: In mice, therapeutic nanoparticles dampen H. pylori bacteria and inflammation that lead to ulcers and gastric cancer November 25th, 2014

Research reveals how our bodies keep unwelcome visitors out of cell nuclei November 24th, 2014

ASU, IBM move ultrafast, low-cost DNA sequencing technology a step closer to reality November 24th, 2014

An Inside Job: UC-Designed Nanoparticles Infiltrate, Kill Cancer Cells From Within November 24th, 2014

Discoveries

The mysterious 'action at a distance' between liquid containers November 26th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Vegetable oil ingredient key to destroying gastric disease bacteria: In mice, therapeutic nanoparticles dampen H. pylori bacteria and inflammation that lead to ulcers and gastric cancer November 25th, 2014

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Announcements

SEMATECH to Showcase Innovation and Advances in Manufacturing at SEMICON Japan 2014: SEMATECH experts will share the latest techniques, emerging trends and best practices in advanced manufacturing strategies and methodologies November 26th, 2014

Australian startup creates world’s first 100% cotton hydrophobic T-Shirts November 26th, 2014

The mysterious 'action at a distance' between liquid containers November 26th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE