Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > DNA as a Future Component of Electronics

Abstract:
Our electronic devices are getting smaller and smaller while doing more and more, so much so that we will soon reach the practical limit of current materials. The electronics of tomorrow require alternatives, such as nanowires made of DNA that can serve as conductive paths and nanotransistors for miniature circuits. In the journal Angewandte Chemie, German scientists have now described a new method for the production of stable, conducting DNA nanowires.

DNA as a Future Component of Electronics

Germany | Posted on July 26th, 2012

DNA is more than a carrier of genetic information; it is also an interesting building material for nanotechnology. This is because of its extraordinary self-organizational properties. DNA is thus often used as a "mold" for the production of nanoscale structures. Its use in the assembly of electronic circuits is hampered by the fact that DNA is a very poor conductor of electricity. One way to get around this is by depositing metal onto the DNA strands.

Scientists at the RWTH Aachen and the University of Munich have now developed a new strategy for the controlled production and metallization of DNA nanostructures. Led by Ulrich Simon, the team used a DNA strand consisting of an immobilization sequence and a metallization sequence. Several such strands are strung together so that the resulting DNA is made of alternating sequences.

The immobilization sequence contains alkyne groups. These allow the DNA to be snapped into place on a silicon wafer coated with azide groups in what is known as a "click" reaction. The other DNA segment has two tasks: it is equipped with functional groups that cause the aggregation of silver particles and can also attach DNA strands to each other.

The DNA strands are stretched, deposited onto the wafers, and attached by the "click" reaction. During the subsequent metallization with silver particles, neighboring strands are simultaneously cross-linked to form multistrands. These have significantly higher structural stability than single strands. In the future, this method could also be used to integrate the DNA strands into programmable DNA architectures to allow for the positioning and binding of complex structures on prestructured substrates.

Deposition of the silver particles does not complete the metallization process. In a second step, which resembles the development of photographs, gold from a solution can be deposited onto the silver particles. Changing the duration of the gold deposition process allows for variation of the diameter of the resulting nanowires.

This new method allowed the scientists to obtain micrometer-long, electrically contactable nanowires that have potential for development into further miniaturized circuits.

####

For more information, please click here

Copyright © Wiley-VCH Materials Science Journals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Link to the original paper on Wiley Online Library:

Related News Press

News and information

Iranian Researchers Planning to Produce Edible Insulin January 28th, 2015

Nanoparticles that deliver oligonucleotide drugs into cells described in Nucleic Acid Therapeutics January 28th, 2015

'Bulletproof' battery: Kevlar membrane for safer, thinner lithium rechargeables January 28th, 2015

Spider electro-combs its sticky nano-filaments January 28th, 2015

Chip Technology

Researchers Make Magnetic Graphene: UC Riverside research could lead to new multi-functional electronic devices January 27th, 2015

Nanometrics to Present at the Stifel 2015 Technology, Internet and Media Conference January 27th, 2015

New pathway to valleytronics January 27th, 2015

Entanglement on a chip: Breakthrough promises secure communications and faster computers January 27th, 2015

Nanoelectronics

Electronic circuits with reconfigurable pathways closer to reality January 26th, 2015

Rice-sized laser, powered one electron at a time, bodes well for quantum computing January 15th, 2015

Rapid journey through a crystal lattice: Researchers measure how fast electrons move through single atomic layers January 14th, 2015

A new step towards using graphene in electronic applications January 14th, 2015

Discoveries

Detecting chemical weapons with a color-changing film January 28th, 2015

Joint international research project leads to a breakthrough in terahertz spectroscopy January 28th, 2015

Iranian Researchers Planning to Produce Edible Insulin January 28th, 2015

Nanoparticles that deliver oligonucleotide drugs into cells described in Nucleic Acid Therapeutics January 28th, 2015

Announcements

Iranian Researchers Planning to Produce Edible Insulin January 28th, 2015

Nanoparticles that deliver oligonucleotide drugs into cells described in Nucleic Acid Therapeutics January 28th, 2015

'Bulletproof' battery: Kevlar membrane for safer, thinner lithium rechargeables January 28th, 2015

Spider electro-combs its sticky nano-filaments January 28th, 2015

Nanobiotechnology

Spider electro-combs its sticky nano-filaments January 28th, 2015

Nanoshuttle wear and tear: It's the mileage, not the age January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

DNA 'glue' could someday be used to build tissues, organs January 14th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE