Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Speed and power of X-ray laser helps unlock molecular mysteries: New nanocrystallography technique shines light on biomolecules in action

Abstract:
By outrunning a laser's path of destruction, an international research team has created 3D images of fragile but biologically important molecules inside protein nanocrystals. Using the Linac Coherence Light Source (LCLS), a powerful X-ray laser at the SLAC National Accelerator Laboratory in Menlo Park, Calif., the scientists fired femtosecond (one quadrillionth of a second) bursts of light at a stream of tumbling molecules, obliterating them as they pass, but not before capturing otherwise illusive images of their crystalline structures.

Speed and power of X-ray laser helps unlock molecular mysteries: New nanocrystallography technique shines light on biomolecules in action

College Park, MD | Posted on July 26th, 2012

An overview and early results of this new imaging technique will be presented at the 2012 meeting of the American Crystallographic Association (ACA), which takes place July 28 - Aug. 1 in Boston, Mass.

"These laser pulses are so brief that we are able to outrun the radiation's damaging effects," said John C.H. Spence of Arizona State University, one of more than 70 international researchers from institutions including SLAC; DESY, the German Electron Synchrotron; and the Max-Planck Institute in Heidelberg, Germany.

"Using this so-called 'diffract-then-destroy' approach, our research team recorded about a hundred scattering patterns per second from protein nanocrystals," said Spence. "This is an important step toward the making of movies of biomolecules at work."

In traditional crystallography, a beam of X-rays first interacts with a crystal and then appears on a photo-detector as diffraction spots of greater and lesser intensity. These patterns encode the density of electrons in the crystal, enabling scientists to determine the three-dimensional position of atoms, chemical bonds, and other information. To obtain this information, the crystal is frozen, to reduce radiation damage, and placed on a rotating mount and bombarded with X-rays as its orientation is changed. A scattering pattern is slowly built up and the 3D structure can eventually be deduced.

This traditional method of using frozen molecules, however, prevents observation of the molecules at work in their native liquid environment at room temperature.

To obtain images of these molecules in the more natural state, the researchers sent the protein nanocrystals streaming in a single-file micron-sized droplet beam (rather like an ink-jet printer) in vacuum across the X-ray beam, in a method developed at Arizona State University.

Next they fired incredibly brief bursts of X-ray laser light, about 100 times each second, at the molecules in the droplet beam, and detected the scattered X-ray patterns from each particle before the intensity of the beam blasted them apart. The researchers were able to combine these millions of snapshots to build up 3D models of the molecules with atomic-scale resolution.

One particular molecule that was studied this way was Photosystem 1-ferredoxin, which is the chemical powerhouse that drives photosynthesis. The molecules for this experiment were made in the laboratory of Arizona State University researcher Petra Fromme.

Photosystem 1 harnesses sunlight to split water to make the oxygen we breathe, absorb carbon dioxide, and produce sugars, which maintains our biosphere. These molecules were studied "in action" by exciting them with a pulse of green laser light (to mimic the effect of sunlight falling on a leaf) a few microseconds before taking their X-ray snapshot. Each snapshot then became one frame of a movie. By changing the delay between green pulse and X-ray pulse, the researchers could create a 3D movie of a biomolecule in action.

"Many other groups we are supporting now are applying the method to other proteins, such as enzymes, drug molecule targets, and imaging chemical reactions as they develop along the liquid jet," said Spence. "The important thing was to get atomic-resolution snapshot images from nanocrystals at room temperature without radiation damage."

A complete listing of the collaborating research institutions follows:

- Center for Free-Electron Laser Science, DESY, Hamburg, Germany
- Photon Science, DESY, Hamburg, Germany
- Department of Chemistry and Biochemistry, Arizona State University, Tempe
- Department of Physics, Arizona State University
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Sweden
- Department of Chemistry, Biochemistry, and Biophysics, Göteborg University, Sweden
- Max Planck Advanced Study Group, Center for Free Electron Laser Science (CFEL), Hamburg, Germany
- Max-Planck-Institut für medizinische Forschung, Heidelberg, Germany
- PULSE Institute and SLAC National Accelerator Laboratory, Menlo Park, Calif.
- LCLS, SLAC National Accelerator Laboratory
- CEA, Institut de Biologie et de Technologies de Saclay, France
- European XFEL GmbH, Hamburg, Germany
- Department of Physics, Cornell University, Ithaca, New York
- Max-Planck-Institut für Kernphysik
- Lawrence Livermore National Laboratory, Livermore, Calif.
- PNSensor GmbH, München, Germany
- Max-Planck-Institut Halbleiterlabor, München, Germany
- Advanced Light Source, Lawrence Berkeley National Laboratory
- University of Hamburg,
- Max-Planck-Institut für extraterrestrische Physik, Garching, Germany

This news release was prepared for the American Crystallographic Association (ACA) by the American Institute of Physics (AIP).

MORE INFORMATION ABOUT THE 2012 ACA MEETING

The ACA is the largest professional society for crystallography in the United States, and this is its main meeting. All scientific sessions, workshops, poster sessions, and events will be held at the Westin Waterfront Hotel in Boston, Mass.

ABOUT ACA

The American Crystallographic Association (ACA) was founded in 1949 through a merger of the American Society for X-Ray and Electron Diffraction (ASXRED) and the Crystallographic Society of America (CSA). The objective of the ACA is to promote interactions among scientists who study the structure of matter at atomic (or near atomic) resolution. These interactions will advance experimental and computational aspects of crystallography and diffraction. They will also promote the study of the arrangements of atoms and molecules in matter and the nature of the forces that both control and result from them.

####

For more information, please click here

Contacts:
Catherine Meyers

301-209-3088

Copyright © American Institute of Physics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Main meeting website:

Meeting program:

Meeting abstracts:

Exhibits:

Related News Press

News and information

Fast, stretchy circuits could yield new wave of wearable electronics May 30th, 2016

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Imaging

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Discoveries

Fast, stretchy circuits could yield new wave of wearable electronics May 30th, 2016

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Announcements

Fast, stretchy circuits could yield new wave of wearable electronics May 30th, 2016

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Tools

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

More light on cancer: Scientists created nanoparticles to highlight cancer cells May 21st, 2016

Nanotubes are beacons in cancer-imaging technique: Rice University researchers use spectral triangulation to pinpoint location of tumors May 21st, 2016

Events/Classes

Novel gene therapy shows potential for lung repair in asthma May 18th, 2016

Arrowhead Pharmaceuticals' Preclinical Candidate ARC-LPA Achieves 98% Knockdown and Long Duration of Effect after Subcutaneous Administration May 10th, 2016

Nanometrics Announces Upcoming Investor Events May 10th, 2016

Oxford Instruments Asylum Research and McGill University Announce the McGill AFM Summer School and Workshop, May 12-13, 2016 May 4th, 2016

Photonics/Optics/Lasers

Attosecond physics: A switch for light-wave electronics May 24th, 2016

Photon collisions: Photonic billiards might be the newest game! May 20th, 2016

We’ll Leave the Lights On For You: Photonics advances allow us to be seen across the universe, with major implications for the search for extraterrestrial intelligence, says UC Santa Barbara physicist Philip Lubin - See more at: http://www.news.ucsb.edu/2016/016805/we-ll-leave-li May 17th, 2016

UW researchers unleash graphene 'tiger' for more efficient optoelectronics May 16th, 2016

Research partnerships

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

The next generation of carbon monoxide nanosensors May 26th, 2016

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic