Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Going big: UD researchers report progress in development of carbon nanotube-based continuous fibers

From left, Tsu-Wei Chou, Amanda Wu and Weibang Lu in Spencer Laboratory
Photo by Kathy F. Atkinson
From left, Tsu-Wei Chou, Amanda Wu and Weibang Lu in Spencer Laboratory

Photo by Kathy F. Atkinson

Abstract:
The Chou research group in the University of Delaware's College of Engineering recently reported on advances in carbon nanotube-based continuous fibers with invited articles in Advanced Materials and Materials Today, two high impact scientific journals.

Going big: UD researchers report progress in development of carbon nanotube-based continuous fibers

Newark, DE | Posted on July 25th, 2012

According to Tsu-Wei Chou, Pierre S. du Pont Chair of Engineering, who co-authored the articles with colleagues Weibang Lu and Amanda Wu, there has been a concerted scientific effort over the last decade to "go big" - to translate the superb physical and mechanical properties of nanoscale carbon nanotubes to the macroscale.

The result, he says, has been the development of continuous fibers comprised solely of carbon nanotubes held together through local entanglements and van der Waals forces, a type of weak molecular interactions.

"Despite a discontinuous microstructure, these carbon nanotube fibers exhibit strengths comparable to current high performance fibers with significantly lower densities, creating new avenues for ultra-light weight multifunctional composite materials and structures," explains Chou.

"Furthermore, their flexibility and electrical conductivity have gained attention and given rise to the potential for carbon nanotube fibers to serve as embedded strain and damage sensors."

The challenge, however, remains how to scale up the material's size without sacrificing performance and functionality.

Lu's article, published in Advanced Materials, provides an in-depth analysis of the current carbon nanotube fiber processing methodology, including drawbacks and potential avenues for improvement. The article offers a thorough comparison of the current physical, electrical and mechanical properties of carbon nanotube fibers.

Wu's article, published in Materials Today, details the recent experimental characterization of carbon nanotube fibers performed by the Chou group. The review emphasizes the dynamic electromechanical behavior of carbon nanotube fibers and explores opportunities for carbon nanotube fibers in advanced composite applications.

About the researchers

Weibang Lu received his doctoral degree in solid mechanics from Tsinghua University, China, in 2009. His research focuses on the development of theoretical and computational approaches to analyze and predict the behavior of carbon nanotube fibers, with particular emphasis on atomic level approaches.

Amanda Wu received her doctoral degree in materials science and engineering from UD in 2009. Her work explores the experimental characterization of composite materials and their reinforcements with particular emphasis on the dynamic, high strain rate behavior of materials.

Lu and Wu are both research associates in the Department of Mechanical Engineering and the Center for Composite Materials.

Article by Karen B. Roberts

####

For more information, please click here

Contacts:
University of Delaware
Office of Communications & Marketing
302-831-NEWS

Copyright © University of Delaware

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Conductive Inks: booming to $2.8 billion by 2024 April 17th, 2014

High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014

INSCX™ exchange to present Exchange trade reporting mechanism for engineered nanomaterials (NMs) to UK regulation agencies, insurers and upstream/downstream users April 17th, 2014

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

Nanotubes/Buckyballs

Effects of Carbon Nanotubes Studied on Pregnant Mothers April 12th, 2014

Nanotech Business Review 2013-2014 April 9th, 2014

Scientists Succeed in Simultaneous Determination of Acetaminophen, Codeine in Drug Samples April 9th, 2014

Rebar technique strengthens case for graphene: Rice University lab makes hybrid nanotube-graphene material that promises to simplify manufacturing April 7th, 2014

Discoveries

Novel stapled peptide nanoparticle combination prevents RSV infection, study finds April 17th, 2014

Thinnest feasible membrane produced April 17th, 2014

More effective kidney stone treatment, from the macroscopic to the nanoscale April 17th, 2014

High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014

Materials/Metamaterials

Thinnest feasible membrane produced April 17th, 2014

INSCX™ exchange to present Exchange trade reporting mechanism for engineered nanomaterials (NMs) to UK regulation agencies, insurers and upstream/downstream users April 17th, 2014

Engineers develop new materials for hydrogen storage April 15th, 2014

Industrial Nanotech, Inc. Lands First Major Order from Pemex, Mexico’s State-Owned Oil and Gas Company April 14th, 2014

Announcements

More effective kidney stone treatment, from the macroscopic to the nanoscale April 17th, 2014

High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014

INSCX™ exchange to present Exchange trade reporting mechanism for engineered nanomaterials (NMs) to UK regulation agencies, insurers and upstream/downstream users April 17th, 2014

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE