Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > UK research paves way to a scalable device for quantum information processing: A groundbreaking new device from the National Physical Laboratory could help to usher in the long-awaited era of quantum computers

Semi-conductor chip used by scientists at the National Physcial Laboratory to test the first scalable 3D ion microtrap.

Credit: National Physical Laboratory
Semi-conductor chip used by scientists at the National Physcial Laboratory to test the first scalable 3D ion microtrap.

Credit: National Physical Laboratory

Abstract:
Researchers at NPL have demonstrated for the first time a monolithic 3D ion microtrap array which could be scaled up to handle several tens of ion-based quantum bits (qubits). The research, published in Nature Nanotechnology, shows how it is possible to realise this device embedded in a semiconductor chip, and demonstrates the device's ability to confine individual ions at the nanoscale.

UK research paves way to a scalable device for quantum information processing: A groundbreaking new device from the National Physical Laboratory could help to usher in the long-awaited era of quantum computers

Teddington, UK | Posted on July 24th, 2012

As the UK's National Measurement Institute, NPL is interested in how exotic quantum states of matter can be used to make high precision measurements, of for example, time and frequency, ever more accurate. This research, however, has implications wider than measurement. The device could be used in quantum computation, where entangled qubits are used to execute powerful quantum algorithms. As an example, factorisation of large numbers by a quantum algorithm is dramatically faster than with a classical algorithm.

Scalable ion traps consisting of a 2D array of electrodes have been developed, however 3D trap geometries can provide a superior potential for confining the ions. Creating a successful scalable 3D ion trapping device is based on maintaining two qualities - the ability to scale the device to accommodate increasing numbers of atomic particles, whilst preserving the trapping potential which enables precise control of ions at the atomic level. Previous research resulted in compromising at least one of these factors, largely due to limitations in the manufacturing processes.

The team at NPL has now produced the first monolithic ion microtrap array which uniquely combines a near ideal 3D geometry with a scalable fabrication process - a breakthrough in this field. In terms of elementary operating characteristics, the microtrap chip outperforms all other scalable devices for ions.

Using a novel process based on conventional semiconductor fabrication technology, scientists developed the microtrap device from a silica-on-silicon wafer. The team were able to confine individual and strings of up to 14 ions in a single segment of the array. The fabrication process should enable device scaling to handle greatly increased numbers of ions, whilst retaining the ability to individually control each of them.

Due to the enormous progress in nanotechnology, the power of classical processor chips has been scaled up according to Moore's Law. Quantum processors are in their infancy, and the NPL device is a promising approach for advancing the scale of such chips for ion-based qubits.

Alastair Sinclair, Principal Scientist, NPL said:

"We managed to produce an essential device or tool, which is critical for state of the art research and development in quantum technologies. This could be the basis of a future atomic clock device, with relevance for location, timing, navigation services or even the basis of a future quantum processor chip based on trapped ions, leading to a quantum computer and a quantum information network."

####

For more information, please click here

Contacts:
Natasha Warren

084-568-01869

Copyright © National Physical Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The full paper 'A monolithic array of three-dimensional ion traps fabricated with conventional semiconductor technology', published online in Nature Nanotechnology can be found here:

Related News Press

Laboratories

Channeling valleytronics in graphene: Berkeley Lab researchers discover 1-D conducting channels in bilayer graphene May 6th, 2015

Grafoid Acquires MuAnalysis Inc; Expands Its Advanced Materials Testing Capabilities May 6th, 2015

News and information

The next step in DNA computing: GPS mapping? May 6th, 2015

Improving Clinical Care and Patient Quality of Life in Advanced Liver Disease, d-LIVER Workshop, Milan, 27 May 2015 May 6th, 2015

Grafoid Acquires MuAnalysis Inc; Expands Its Advanced Materials Testing Capabilities May 6th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Channeling valleytronics in graphene: Berkeley Lab researchers discover 1-D conducting channels in bilayer graphene May 6th, 2015

A better way to build DNA scaffolds: McGill researchers devise new technique to produce long, custom-designed DNA strands May 6th, 2015

Thermometer-like device could help diagnose heart attacks May 6th, 2015

Winner Announced for NNI’s First ‘EnvisioNano’ Nanotechnology Image Contest May 6th, 2015

Possible Futures

Printing Silicon on Paper, with Lasers April 21st, 2015

A glass fiber that brings light to a standstill: By coupling photons to atoms, light in a glass fiber can be slowed down to the speed of an express train; for a short while it can even be brought to a complete stop April 9th, 2015

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Chip Technology

Channeling valleytronics in graphene: Berkeley Lab researchers discover 1-D conducting channels in bilayer graphene May 6th, 2015

A better way to build DNA scaffolds: McGill researchers devise new technique to produce long, custom-designed DNA strands May 6th, 2015

The next step in DNA computing: GPS mapping? May 6th, 2015

New chip architecture may provide foundation for quantum computer: Researchers at the Georgia Tech Research Institute have developed a microfabricated ion trap architecture that holds promise for increasing the density of qubits in future quantum computers May 5th, 2015

Quantum Computing

Channeling valleytronics in graphene: Berkeley Lab researchers discover 1-D conducting channels in bilayer graphene May 6th, 2015

New chip architecture may provide foundation for quantum computer: Researchers at the Georgia Tech Research Institute have developed a microfabricated ion trap architecture that holds promise for increasing the density of qubits in future quantum computers May 5th, 2015

NIST tightens the bounds on the quantum information 'speed limit' April 13th, 2015

Electrical control of quantum bits in silicon paves the way to large quantum computers: Breakthrough by Australian-led team should make the construction of large-scale quantum computers more affordable April 11th, 2015

Discoveries

Attosecond physics: A new gateway to the microcosmos May 6th, 2015

Channeling valleytronics in graphene: Berkeley Lab researchers discover 1-D conducting channels in bilayer graphene May 6th, 2015

A better way to build DNA scaffolds: McGill researchers devise new technique to produce long, custom-designed DNA strands May 6th, 2015

Thermometer-like device could help diagnose heart attacks May 6th, 2015

Announcements

The next step in DNA computing: GPS mapping? May 6th, 2015

Improving Clinical Care and Patient Quality of Life in Advanced Liver Disease, d-LIVER Workshop, Milan, 27 May 2015 May 6th, 2015

Grafoid Acquires MuAnalysis Inc; Expands Its Advanced Materials Testing Capabilities May 6th, 2015

Winner Announced for NNI’s First ‘EnvisioNano’ Nanotechnology Image Contest May 6th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project