Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Radiation damage bigger problem in microelectronics than previously thought

Silicon wafer with radiation damage. (Meroli Stefano / CERN)
Silicon wafer with radiation damage.

(Meroli Stefano / CERN)

Abstract:
The amount of structural damage that radiation causes in electronic materials at the atomic level may be at least ten times greater than previously thought.

Radiation damage bigger problem in microelectronics than previously thought

Nashville, TN | Posted on July 21st, 2012

That is the surprising result of a new characterization method that uses a combination of lasers and acoustic waves to provide scientists with a capability tantamount to X-ray vision: It allows them to peer through solid materials to pinpoint the size and location of detects buried deep inside with unprecedented precision.

The research, which was conducted by post-doctoral fellow Andrew Steigerwald under the supervision of Physics Professor Norman Tolk, was published online on July 19 in the Journal of Applied Physics.

"The ability to accurately measure the defects in electronic materials becomes increasingly important as the size of microelectronic devices continues to shrink," Tolk explained. "When an individual transistor contains millions of atoms, it can absorb quite a bit of damage before it fails. But when a transistor contains a few thousand atoms, a single defect can cause it to stop working."

Previous methods used to study damage in electronic materials have been limited to looking at defects and deformations in the atomic lattice. The new method is the first that is capable of detecting disruption in the positions of the electrons that are attached to the atoms. This is particularly important because it is the behavior of the electrons that determine a material's electrical and optical properties.

"An analogy is a thousand people floating in a swimming pool. The people represent the atoms and the water represents the electrons," said Steigerwald. "If another person - representing an energetic particle - jumps into the pool, the people in his vicinity change their positions slightly to make room for him. However, these shifts can be fairly subtle and difficult to measure. But the jumper will also cause quite a splash and cause the level of the water in the pool to rise. Much like the water in the pool, the electrons in a material are more sensitive to defects than the atoms."

To detect the electron dislocations, the physicists upgraded a 15-year-old method called coherent acoustic phonon spectroscopy (CAPS).

"CAPS is similar to the seismic techniques that energy companies use to search for underground oil deposits, only on a much smaller scale," said Steigerwald.

Oil explorers set off a series of small explosions on the surface and measure the sound waves that are reflected back to the surface. That allows them to identify and map the layers of different types of rock thousands of feet underground.

Similarly, CAPS generates a pressure wave that passes through a chunk of semiconductor by blasting its surface with an ultrafast pulse of laser light. As this happens, the researchers bounce a second laser off the pressure wave and measure the strength of the reflection. As the pressure wave encounters defects and deformities in the material, its reflectivity changes and this alters the strength of the reflected laser light. By measuring these variations, the physicists can detect individual defects and measure the effect that they have on the material's electrical and optical properties.

The physicists tested their technique on a layer of gallium arsenide semiconductor that they had irradiated with high-energy neon atoms. They found that the structural damage caused by an embedded neon atom spread over a volume containing 1,000 atoms - considerably more extensive than that shown by other techniques.

"This is significant because today people are creating nanodevices that contain thousands of atoms," said Steigerwald. One of these devices is a solar collector made from quantum dots, tiny semiconductor beads that each contains a few thousand atoms. "Our results may explain recent studies that have found that these quantum-dot solar collectors are less efficient than predicted," he said.

"The fact is that we really don't understand how any atomic-scale defect affects the performance on an optoelectronic device," said Tolk. "Techniques like the one that we have developed will give us the detailed information we need to figure this out and so help people make nanodevices that work properly."

Research Associate Professor Anthony B. Hmelo, Assistant Professor Kalman Varga and Stevenson Professor of Physics Leonard Feldman also contributed to the research.

The research was supported by Department of Energy grant FG02-99ER45781, Army Research Office grant W911NF-07-R-0003-02 and National Science Foundation grant ECCS0925422. In addition, portions of the work were performed at the Vanderbilt Institute of Nanoscale Science and Engineering, using facilities renovated with the NSF grant ARI-RW DMR-096331.

Visit Research News @ Vanderbilt for more research news from Vanderbilt. [Media Note: Vanderbilt has a 24/7 TV and radio studio with a dedicated fiber optic line and ISDN line. Use of the TV studio with Vanderbilt experts is free, except for reserving fiber time.]

####

For more information, please click here

Contacts:
David Salisbury

615-343-6803

Copyright © Vanderbilt University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A breakthrough in imaging gold nanoparticles to atomic resolution by electron microscopy August 22nd, 2014

Ultra-short pulse lasers & Positioning August 21st, 2014

Malvern’s Dr Alan Rawle talks TLAs in plenary lecture at Particulate Systems Analysis conference August 21st, 2014

Water window imaging opportunity: A new theoretical study elucidates mechanisms that could help in producing coherent radiations, ultimately promoting high-contrast imaging of biological samples August 21st, 2014

Govt.-Legislation/Regulation/Funding/Policy

Shaping the Future of Nanocrystals: Berkeley Lab Researchers Obtain First Direct Observation of Facet Formation in Nanocubes August 21st, 2014

Success in Intracellular Imaging of Cesium Distribution in Plants Used for Cesium Absorption August 19th, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

Chip Technology

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

AI Technology (AIT) Introduces Novel High Temperature Large Area Underfill with Proven Stress Absorption August 15th, 2014

Iranian Scientists Stabilize Protein on Highly Stable Electrode Surface August 14th, 2014

Optical Computing

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

NUS scientists use low cost technique to improve properties and functions of nanomaterials: By 'drawing' micropatterns on nanomaterials using a focused laser beam, scientists could modify properties of nanomaterials for effective applications in photonic and optoelectric applicat July 22nd, 2014

New NIST metamaterial gives light a one-way ticket July 2nd, 2014

Don't blink! NIST studies why quantum dots suffer from 'fluorescence intermittency' May 22nd, 2014

Discoveries

A breakthrough in imaging gold nanoparticles to atomic resolution by electron microscopy August 22nd, 2014

Shaping the Future of Nanocrystals: Berkeley Lab Researchers Obtain First Direct Observation of Facet Formation in Nanocubes August 21st, 2014

Water window imaging opportunity: A new theoretical study elucidates mechanisms that could help in producing coherent radiations, ultimately promoting high-contrast imaging of biological samples August 21st, 2014

Nanotechnology Helps Production of Super Adsorbent Polymers August 21st, 2014

Announcements

A breakthrough in imaging gold nanoparticles to atomic resolution by electron microscopy August 22nd, 2014

Ultra-short pulse lasers & Positioning August 21st, 2014

Malvern’s Dr Alan Rawle talks TLAs in plenary lecture at Particulate Systems Analysis conference August 21st, 2014

Water window imaging opportunity: A new theoretical study elucidates mechanisms that could help in producing coherent radiations, ultimately promoting high-contrast imaging of biological samples August 21st, 2014

Military

New material could enhance fast and accurate DNA sequencing August 13th, 2014

On the frontiers of cyborg science August 10th, 2014

Advanced thin-film technique could deliver long-lasting medication: Nanoscale, biodegradable drug-delivery method could provide a year or more of steady doses August 6th, 2014

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

Photonics/Optics/Lasers

Ultra-short pulse lasers & Positioning August 21st, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Laser makes microscopes way cooler: Cooling a nanowire probe with a laser could lead to substantial improvements in the sensitivity of atomic force probe microscopes August 15th, 2014

Molecular engineers record an electron's quantum behavior August 14th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE