Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > SuperSTEM research reveals that graphene re-knits its holes

Abstract:
Scientists at The University of Manchester and the SuperSTEM facility at STFC's Daresbury Laboratory have discovered that the ‘miracle material', graphene, undergoes a self repairing process to mend holes. This research, published in Nano Letters (link opens in a new window), could hold the key in the quest to realise graphene's huge potential for use in fields from electronics to medicine.

SuperSTEM research reveals that graphene re-knits its holes

Daresbury, UK | Posted on July 20th, 2012



Graphene, which is made of sheets of carbon just one atom thick, is a promising material for a wide range of future applications due, for instance, to its exceptional electronic properties.

The team, which included Professor Kostya Novoselov, who shared a Nobel Prize
(link opens in a new window) in Physics in 2010 for exploiting the remarkable properties of graphene, was originally looking to gain a deeper understanding into how metals interact with graphene, essential if it is to be integrated into practical electronic devices in the future.

The researchers were using a powerful electron microscope at the SuperSTEM Laboratory at Daresbury, which
allows scientists to study the properties of materials one atom at a time. They recently demonstrated that metals can initiate the formation of holes in the graphene sheet, which could be hugely detrimental to the properties of any graphene-based device.

Surprise results then showed that some of the holes that had been created during this process were actually mending themselves spontaneously using nearby loose carbon atoms to re-knit the graphene structure.

Dr Quentin Ramasse, Scientific Director at SuperSTEM said: "This was a very exciting and unexpected result. The fact that graphene can heal itself under the right conditions may be the difference between a working device and a proof of concept without any real application. We may now have a way of not only drilling through graphene in a controlled fashion to sculpt it at the atomic level, but also to grow it back in new shapes. This adds a lot of flexibility to our nanotechnology toolbox and could pave the way to future technological applications".

####

About STFC
SuperSTEM (link opens in a new window)is the EPSRC National Facility for Aberration Corrected STEM and is run by a consortium of universities, consisting of Leeds, Glasgow, Liverpool, Manchester and Oxford. Other collaboration agreements with the external partner universities Cambridge, Sheffield, Warwick and York will be commencing shortly and the facility has received £4.5M funding from EPSRC.

SuperSTEM consists of a principal site facility hosting two aberration corrected STEM instruments in a purpose-designed building at the STFC Daresbury Laboratory, along with four aberration-corrected STEM instruments located at the consortium universities and further instruments located at the partner universities.

Access to SuperSTEM is free at the point of use for EPSRC eligible UK researchers or RCUK ticket holders. Other access is subject to funding. It also welcomes applications from commercial institutions.

For more information, please click here

Contacts:
Wendy Ellison
Tel: +44 (0)1925 603 232
Mob: +44 (0)7919 548 012

Copyright © STFC

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View the full paper online here:

Related News Press

Graphene/ Graphite

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

A metal that behaves like water: Researchers describe new behaviors of graphene February 12th, 2016

News and information

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

A metal that behaves like water: Researchers describe new behaviors of graphene February 12th, 2016

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Silicon chip with integrated laser: Light from a nanowire: Nanolaser for information technology February 12th, 2016

Chip Technology

A metal that behaves like water: Researchers describe new behaviors of graphene February 12th, 2016

Silicon chip with integrated laser: Light from a nanowire: Nanolaser for information technology February 12th, 2016

Research reveals carbon films can give microchips energy storage capability: International team from Drexel University and Paul Sabatier University reveals versatility of carbon films February 11th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Nanomedicine

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Nanoelectronics

Silicon chip with integrated laser: Light from a nanowire: Nanolaser for information technology February 12th, 2016

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

The iron stepping stones to better wearable tech without semiconductors February 8th, 2016

Spin dynamics in an atomically thin semi-conductor February 1st, 2016

Discoveries

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Announcements

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic