Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > SuperSTEM research reveals that graphene re-knits its holes

Abstract:
Scientists at The University of Manchester and the SuperSTEM facility at STFC's Daresbury Laboratory have discovered that the ‘miracle material', graphene, undergoes a self repairing process to mend holes. This research, published in Nano Letters (link opens in a new window), could hold the key in the quest to realise graphene's huge potential for use in fields from electronics to medicine.

SuperSTEM research reveals that graphene re-knits its holes

Daresbury, UK | Posted on July 20th, 2012



Graphene, which is made of sheets of carbon just one atom thick, is a promising material for a wide range of future applications due, for instance, to its exceptional electronic properties.

The team, which included Professor Kostya Novoselov, who shared a Nobel Prize
(link opens in a new window) in Physics in 2010 for exploiting the remarkable properties of graphene, was originally looking to gain a deeper understanding into how metals interact with graphene, essential if it is to be integrated into practical electronic devices in the future.

The researchers were using a powerful electron microscope at the SuperSTEM Laboratory at Daresbury, which
allows scientists to study the properties of materials one atom at a time. They recently demonstrated that metals can initiate the formation of holes in the graphene sheet, which could be hugely detrimental to the properties of any graphene-based device.

Surprise results then showed that some of the holes that had been created during this process were actually mending themselves spontaneously using nearby loose carbon atoms to re-knit the graphene structure.

Dr Quentin Ramasse, Scientific Director at SuperSTEM said: "This was a very exciting and unexpected result. The fact that graphene can heal itself under the right conditions may be the difference between a working device and a proof of concept without any real application. We may now have a way of not only drilling through graphene in a controlled fashion to sculpt it at the atomic level, but also to grow it back in new shapes. This adds a lot of flexibility to our nanotechnology toolbox and could pave the way to future technological applications".

####

About STFC
SuperSTEM (link opens in a new window)is the EPSRC National Facility for Aberration Corrected STEM and is run by a consortium of universities, consisting of Leeds, Glasgow, Liverpool, Manchester and Oxford. Other collaboration agreements with the external partner universities Cambridge, Sheffield, Warwick and York will be commencing shortly and the facility has received £4.5M funding from EPSRC.

SuperSTEM consists of a principal site facility hosting two aberration corrected STEM instruments in a purpose-designed building at the STFC Daresbury Laboratory, along with four aberration-corrected STEM instruments located at the consortium universities and further instruments located at the partner universities.

Access to SuperSTEM is free at the point of use for EPSRC eligible UK researchers or RCUK ticket holders. Other access is subject to funding. It also welcomes applications from commercial institutions.

For more information, please click here

Contacts:
Wendy Ellison
Tel: +44 (0)1925 603 232
Mob: +44 (0)7919 548 012

Copyright © STFC

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View the full paper online here:

Related News Press

News and information

When mediated by superconductivity, light pushes matter million times more April 28th, 2015

Chemists strike nano-gold: 4 new atomic structures for gold nanoparticle clusters: Research builds upon work by Nobel Prize-winning team from Stanford University April 28th, 2015

More is less in novel electronic material: Adding electrons actually shrinks the system April 27th, 2015

Two-dimensional semiconductor comes clean April 27th, 2015

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

Graphene

Two-dimensional semiconductor comes clean April 27th, 2015

The 16th Trends in Nanotechnology International Conference (TNT 2015) unveils 25 Keynote Speakers: Call for abstracts open April 27th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Chemists strike nano-gold: 4 new atomic structures for gold nanoparticle clusters: Research builds upon work by Nobel Prize-winning team from Stanford University April 28th, 2015

International research team discovers new mechanism behind malaria progression: Findings provide a new avenue for research in malaria treatment April 27th, 2015

More is less in novel electronic material: Adding electrons actually shrinks the system April 27th, 2015

Two-dimensional semiconductor comes clean April 27th, 2015

Chip Technology

Two-dimensional semiconductor comes clean April 27th, 2015

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

Drexel materials scientists putting a new spin on computing memory April 22nd, 2015

Printing Silicon on Paper, with Lasers April 21st, 2015

Nanomedicine

Chemists strike nano-gold: 4 new atomic structures for gold nanoparticle clusters: Research builds upon work by Nobel Prize-winning team from Stanford University April 28th, 2015

Self-assembling biomaterial forms nanostructure templates for human tissue formation April 27th, 2015

International research team discovers new mechanism behind malaria progression: Findings provide a new avenue for research in malaria treatment April 27th, 2015

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

Nanoelectronics

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

New class of 3D-printed aerogels improve energy storage April 22nd, 2015

‘Oxford Instruments Young Nanoscientist India Award 2015’ to Prof. Arindam Ghosh April 20th, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Discoveries

When mediated by superconductivity, light pushes matter million times more April 28th, 2015

Chemists strike nano-gold: 4 new atomic structures for gold nanoparticle clusters: Research builds upon work by Nobel Prize-winning team from Stanford University April 28th, 2015

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

Announcements

When mediated by superconductivity, light pushes matter million times more April 28th, 2015

Chemists strike nano-gold: 4 new atomic structures for gold nanoparticle clusters: Research builds upon work by Nobel Prize-winning team from Stanford University April 28th, 2015

Graphenea celebrates fifth anniversary April 27th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project