Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > ‘Loops of light’ promising for optical detection of individual molecules

Abstract:
KU Leuven researcher Ventsislav Valev and an international team of colleagues have developed a new method for manipulating light at the nanoscale in order to optically detect single molecules. By shining circularly polarised light on a gold, square-ring shaped nanostructure, the researchers were able to ‘activate' the entire surface of the nanostructure, thereby significantly increasing the opportunity for interaction with molecules. The method has a broad range of potential applications in nanoscale photochemistry and could assist in the advancement of technologies for visualising single molecules and multiple-molecule interactions.

‘Loops of light’ promising for optical detection of individual molecules

Leuven, Belgium | Posted on July 19th, 2012

Nanotechnology researchers around the world are exploring ways to optically detect single molecules, but progress can be hindered by the fact that single molecules have extremely weak optical responses. Thus far, scientists have developed a way to use metal nanostructures to focus light into tiny spots called ‘hotspots'. The hotspots excite electrons on the surface of the nanostructure, causing them to oscillate coherently. When shone on a molecule, and with the help of these oscillating electrons, the focused light can increase a molecule's optical signal to 100 billion times its normal strength. This signal can then be detected with an optical microscope.

But there are two limitations to the current method: hotspots can become too hot, and they are just spots. That is, the heat from hotspots can melt the nanostructures, thus destroying their ability to channel light effectively, and hotspots produce only a very small cross-section in which interaction with molecules can take place. Additionally, for a single molecule to become detectable, it needs to find the hotspot.

Loops of light

In order to overcome these limitations, Dr. Valev and his colleagues sought out to nanoengineer larger spots. They began by shining circularly polarised light rather than linearly polarised light on the nanostructures and found that this could increase the useful area of these nanostructures. More importantly, when shone on square-ring shaped gold nanostructures, the scientists observed that theentire surface of the nanostructures was successfully activated.

Dr. Valev explains: "Essentially, light is constituted of electric and magnetic fields moving through space. While with linearly polarised light, the fields move in a linear, forward direction, with circularly polarised light, they rotate in a spiral-like motion." The circularly polarised light imparts a sense of rotation on the electron density in ring-shaped gold nanostructures, thus trapping the light in the rings and forming ‘loops of light'. The loops of light cause excited electrons to oscillate coherently on the full surface of the square-ringed nanostructures - rather than in a few concentrated hotspots. This increases the opportunity for interaction with molecules: "The trick is to try to activate the whole surface of the nanostructure so that whenever a molecule attaches, we will be able to see it," says Dr. Valev. "That is precisely what we did."

The method has a broad range of potential applications in nanoscale photochemistry and could assist in the advancement of technologies for visualising single molecules and multiple-molecule interactions. The findings were published in the scientific journal Advanced Materials.

Full bibliographic information

Valev, V. K., De Clercq, B., Biris, C. G., Zheng, X., Vandendriessche, S., Hojeij, M., Denkova, D., Jeyaram, Y., Panoiu, N. C., Ekinci, Y., Silhanek, A. V., Volskiy, V., Vandenbosch, G. A. E., Ameloot, M., Moshchalkov, V. V. and Verbiest, T. (2012), Distributing the Optical Near-Field for Efficient Field-Enhancements in Nanostructures. Advanced Materials doi: 10.1002/adma.201201151

####

For more information, please click here

Contacts:
Ventsislav Valev
Molecular Imaging and Photonics
KU Leuven
+32 16 3 27622

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The full text of the paper “Distributing the optical near-field for efficient field-enhancements in nanostructures” is available on the website of Advanced Materials:

Related News Press

News and information

Animal study shows flexible, dissolvable silicon device promising for brain monitoring: Other applications include post-operative observation for vascular, cardiac, and orthopaedic procedures, finds Penn study May 5th, 2016

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Clues on the path to a new lithium battery technology: Charging produces highly reactive singlet oxygen in lithium air batteries May 5th, 2016

Imaging

Oxford Instruments Asylum Research and McGill University Announce the McGill AFM Summer School and Workshop, May 12-13, 2016 May 4th, 2016

The intermediates in a chemical reaction photographed 'red-handed' Researchers at the UPV/EHU-University of the Basque Country have for the first time succeeded in imaging all the steps in a complex organic reaction and have resolved the mechanisms that explain it May 4th, 2016

New tool allows scientists to visualize 'nanoscale' processes May 4th, 2016

Chemistry

The intermediates in a chemical reaction photographed 'red-handed' Researchers at the UPV/EHU-University of the Basque Country have for the first time succeeded in imaging all the steps in a complex organic reaction and have resolved the mechanisms that explain it May 4th, 2016

New tool allows scientists to visualize 'nanoscale' processes May 4th, 2016

Discoveries

Animal study shows flexible, dissolvable silicon device promising for brain monitoring: Other applications include post-operative observation for vascular, cardiac, and orthopaedic procedures, finds Penn study May 5th, 2016

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Unique nano-capsules promise the targeted drug delivery: Russian scientists created unique nano-capsules for the targeted drug delivery May 5th, 2016

Announcements

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Clues on the path to a new lithium battery technology: Charging produces highly reactive singlet oxygen in lithium air batteries May 5th, 2016

Unique nano-capsules promise the targeted drug delivery: Russian scientists created unique nano-capsules for the targeted drug delivery May 5th, 2016

Photonics/Optics/Lasers

Molybdenum disulfide holds promise for light absorption: Rice researchers probe light-capturing properties of atomically thin MoS2 May 5th, 2016

A compact, efficient single photon source that operates at ambient temperatures on a chip: Highly directional single photon source concept is expected to lead to a significant progress in producing compact, cheap, and efficient sources of quantum information bits for future appls May 3rd, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Researchers create a first frequency comb of time-bin entangled qubits: Discovery is a significant step toward multi-channel quantum communication and higher capacity quantum computers April 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic