Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Ultra low level biodetection achieved by Dublin researchers on standard qNano nanopore instrument

Abstract:
Researchers at the Lee Bionanosciences Laboratory at UCD in Dublin have demonstrated the detection and measurement of biological analytes down to femtomolar concentration levels using an off the shelf qNano instrument. This ultra low level biodetection capability has implications for biomedical research and clinical development as trace amounts of a biological substance in a sample can now be detected and quantified using standard commercially available equipment.

Ultra low level biodetection achieved by Dublin researchers on standard qNano nanopore instrument

Dublin, Ireland and Christchurch, New Zealand | Posted on July 18th, 2012

The findings by Dr. Mark Platt (Loughborough University and formerly University College Dublin), Professor Gil Lee, (University College Dublin) and Dr. Geoff Willmott (MacDiarmid Institute, New Zealand) have been published in Small, the peer-reviewed journal on micro- and nanoscales science.

Platt and colleagues' method for femtomolar-level detection uses magnetic particle systems and can be applied to any biological particle or protein for which specific antibodies or aptamers exist. Resistive pulse sensing, the underlying technology of the qNano, was used to monitor individual and aggregated rod-shaped nanoparticles as they move through tunable pores in elastomeric membranes.

The authors say, "The strength of using the qNano is its simplicity and the ability to interrogate individual particles through a nanopore. This allowed us to establish a very sensitive measurement of concentration because we could detect the interactions occurring down to individual particle level."

The unique and technically innovative approach of the authors was to detect a molecule's presence by a process that results in end on end or side by side aggregation of rod shaped nickel-gold particles. The rods were designed so that any specific aptamer could be attached to one end only.

"By comparing particles of similar dimensions we demonstrated that the resistive pulse signal is fundamentally different for rod and sphere-shaped particles, and for rod shaped particles of different lengths. We could exploit these differences in a new agglutination assay to achieve these low detection levels," says Dr. Platt.

In the agglutination assay particles with a particular aspect ratio can be distinguished by two measurements: the measured drop in current as particles traverse the pore ( ?ip ), which reveals the particle's size, and the full width at half maximum (FWHM) duration of the resistive pulse, which relates to the particle's speed and length. Limits of detection down to femtomolar levels were thus able to be demonstrated.

The article "Resistive Pulse Sensing of Analyte-Induced Multicomponent Rod Aggregation Using Tunable Pores" Platt, M., Willmott, G. R. and Lee, G. U. (2012), Small. doi: 10.1002/smll.201200058 is online for subscribers at http://onlinelibrary.wiley.com/doi/10.1002/smll.201200058/abstract.

"This is a real milestone for Izon's technology as being able to measure biomolecules down to these extremely low levels opens up new bio-analysis options for researchers. 10 femtomolar was achieved, which is the equivalent dilution to 1 gram in 3.3 billion litres, or 1 gram in 1300 Olympic sized swimming pools," says Hans van der Voorn, Executive Chairman of Izon Science.

Izon Science will continue to work with Dr. Platt at Loughborough, and with University College Dublin and various customers to develop a series of diagnostic kits that can be used with the qNano to identify and measure biomolecules, viruses, and microvesicles.

"We're now developing standardised diagnostics kits for researchers which will allow them to optimise protocols for their particular targets of interest. The interest is in accurate quantification as much as the core detection," says van der Voorn.

Izon Science is the developer of the portable qNano and qViro-X instruments with unique size-tunable nanopores. The multi-parameter instruments offer significant accuracy and reliability improvements over light based techniques and are advancing research in a number of fields including nanomedicine, hematology, gene therapy and vaccine development.

Funding Sources:

Science Foundation of Ireland Research Grants 08/IN/1B0272 and 08/PR1/B1376, European Research Commision FP7-PEOPLE-2009-IEF-252935, New Zealand Ministry of Science and Innovation NERF Contract C08x0806, and The Royal Society of New Zealand's International Mobility Fund IMF10-B41.

####

About Izon Science
Izon Science has developed the world's first nanopore based measurement system available for general use. Izon's instruments are used for precise measurement and analysis of individual particles across a wide range of scientific fields including, nanomedicine, vaccinology, gene therapy and hematology. Izon originated in New Zealand and now sells its products in 30 countries. It has its European headquarters in Oxford, UK and US headquarters in Cambridge, MA. Website: www.izon.com; Facebook: www.facebook.com/izonscience; Twitter: www.twitter.com/izonscience


About the Lee Bionanosciences Lab at UCD:

Led by Professor Gil Lee, this interdisciplinary research group works at the interface between physics, chemistry and biology. Its current research areas broadly include:
- Synthesis of bionanomaterials with emphasis on assemblies of superparamagnetic nanoparticles
- Study of forces within and between single molecules and cells
- Development of highly sensitive, multiplexed biosensors based on magnetic agglutination
- Development of novel materials for down stream processing

For more information, please click here

Contacts:
Dr Mark Platt
Lecturer
Department of Chemistry
Lougborough University
Phone: +49 1509 222 573
Email:

Prof. Gil Lee
Bionanoscience Group
University College Dulbin
Phone: +353-1-716-2399


Hans van der Voorn
Executive Chairman
Izon Science
Phone: + 64 21 463 399


Sandra Lukey
Shine Group (PR for Izon Science)
Phone: + 64 21 2262 858

Copyright © Izon Science

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Strange electrons break the crystal symmetry of high-temperature superconductors: Brookhaven Lab scientists discover spontaneous voltage perpendicular to applied current that may help unravel the mystery of high-temperature superconductors July 27th, 2017

Getting closer to porous, light-responsive materials: A new flexible material changes its porous nature when exposed to light July 27th, 2017

First Capacitive Transducer with 13nm Gap July 27th, 2017

Living computers: RNA circuits transform cells into nanodevices July 27th, 2017

Graduate Students from Across the Country Attend Hands-on NanoCamp: Prominent scientists Warren Oliver, Ph.D., and George Pharr, Ph.D., presented a weeklong NanoCamp for hand-picked graduate students across the United States July 26th, 2017

Imaging

Phenom-World Launches Phenom Pro and ProX Generation 5 SEMs at Microscopy & Microanalysis Conference USA: The excellent performance in a wide range of applications offers a serious alternative to floor model SEMs July 26th, 2017

The School of Materials at the University of Manchester utilise Debenís mechanical stages to characterise structure and behaviour at the micro- and nano- scale July 25th, 2017

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Nanomedicine

Shining rings: A new material emits white light when exposed to electricity: New synthetic approach could spark development of other dynamic materials July 24th, 2017

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Probiotics: Novel biosynthetic tool to develop metallic nanoparticles: This research article by Dr. Nida Akhtar et al has been published in Recent Patents on Drug Delivery & Formulation, Volume 11, Issue 1, 2017 July 20th, 2017

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Discoveries

Strange electrons break the crystal symmetry of high-temperature superconductors: Brookhaven Lab scientists discover spontaneous voltage perpendicular to applied current that may help unravel the mystery of high-temperature superconductors July 27th, 2017

Getting closer to porous, light-responsive materials: A new flexible material changes its porous nature when exposed to light July 27th, 2017

First Capacitive Transducer with 13nm Gap July 27th, 2017

Living computers: RNA circuits transform cells into nanodevices July 27th, 2017

Announcements

Strange electrons break the crystal symmetry of high-temperature superconductors: Brookhaven Lab scientists discover spontaneous voltage perpendicular to applied current that may help unravel the mystery of high-temperature superconductors July 27th, 2017

Getting closer to porous, light-responsive materials: A new flexible material changes its porous nature when exposed to light July 27th, 2017

First Capacitive Transducer with 13nm Gap July 27th, 2017

Living computers: RNA circuits transform cells into nanodevices July 27th, 2017

Tools

Phenom-World Launches Phenom Pro and ProX Generation 5 SEMs at Microscopy & Microanalysis Conference USA: The excellent performance in a wide range of applications offers a serious alternative to floor model SEMs July 26th, 2017

The School of Materials at the University of Manchester utilise Debenís mechanical stages to characterise structure and behaviour at the micro- and nano- scale July 25th, 2017

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Coupling a nano-trumpet with a quantum dot enables precise position determination July 14th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project