Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > "Sifting" Liquid at the Cellular Level

Abstract:
Drexel University engineers continue to drive research into the use of carbon nanotubes, straw-like structures that are more than 1,000 times thinner than a single human hair. Their most recent development uses the tiny tubes to separate liquids within a solution.

"Sifting" Liquid at the Cellular Level

Philadelphia, PA | Posted on July 17th, 2012

The researchers have shown that individual carbon nanotubes can act as a separation channel that would force two differing molecules to separate as easily as oil and water. For example, the molecules that comprise two chemically distinct liquids will interact differently with the walls of the nanotube as the liquids flow through it. This will cause one of the liquids to drain through the nanoscale straw faster than the other, thus forcing a separation between the two liquids.

This technology could prove useful in a number of applications, including forensic studies with very small sample sizes and studying molecules extracted from individual cells. Forensic experts would be able to analyze trace evidence, even down to a single cell or invisible stains.

"We believe that this research will lead to development of tools for analysis on single living cells and push the limits of analytical chemistry to even smaller scales and to single organelle columns," said Dr. Yury Gogotsi, director of the A.J. Drexel Nanotechnology Institute.

Gogotsi and Dr. Gary Friedman, director of the Drexel Plasma Medicine Lab and a professor of electrical and computer engineering, were the lead researchers on a study about applications of nanotubes for cellular chromatography that was recently published in Nature Publishing Group's Scientific Reports. The research was funded by a grant from W.M. Keck Foundation and the National Science Foundation's National Interdisciplinary Research Teams program.

The carbon nanotubes used in this study measure as small as 70 nanometers in outer diameter and are currently the smallest chromatography columns ever made. The carbon nanotube columns are mechanically robust and are able to withstand repeated bending and compression. These characteristics are vital for applications at the cellular level, as the tiny tubes' durability allows them to penetrate cell membranes.

Continued nanotube research by Drexel engineers will examine the development of electrochemical and optical tools.

####

For more information, please click here

Contacts:
Britt Faulstick

215-895-2617
Mobile: 215-796-5161

Copyright © Drexel University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The full text of the report can be viewed here:

Related News Press

News and information

Roll up your screen and stow it away? Tel Aviv University researchers develop molecular backbone of super-slim, bendable digital displays March 30th, 2015

Princess Margaret scientists convert microbubbles to nanoparticles: Harnessing light to advance tumor imaging, provide platform for targeted treatment March 30th, 2015

Wrapping carbon nanotubes in polymers enhances their performance: Scientists at Japan's Kyushu University say polymer-wrapped carbon nanotubes hold much promise in biotechnology and energy applications March 30th, 2015

Tokyo Institute of Technology research: Catalyst redefines rate limitations in ammonia production March 30th, 2015

Law enforcement/Anti-Counterfeiting/Security/Loss prevention

UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests March 27th, 2015

Pens filled with high-tech inks for do-it-yourself sensors March 3rd, 2015

Novel solid-state nanomaterial platform enables terahertz photonics February 17th, 2015

Waterloo invention advances quantum computing research: New device, which will be used in labs around the world to develop quantum technologies, produces fragile entangled photons in a more efficient way February 16th, 2015

Forensics

Nanoparticles give up forensic secrets October 2nd, 2014

Nanotubes/Buckyballs

Wrapping carbon nanotubes in polymers enhances their performance: Scientists at Japan's Kyushu University say polymer-wrapped carbon nanotubes hold much promise in biotechnology and energy applications March 30th, 2015

Carbon nanotube fibers make superior links to brain: Rice University invention provides two-way communication with neurons March 25th, 2015

Iranian Scientists Eliminate Expensive Materials from Diabetes Diagnosis Sensors March 25th, 2015

Effect of Carbon Nanotubes on Properties of Cement Composites Studied in Iran March 23rd, 2015

Discoveries

Roll up your screen and stow it away? Tel Aviv University researchers develop molecular backbone of super-slim, bendable digital displays March 30th, 2015

Princess Margaret scientists convert microbubbles to nanoparticles: Harnessing light to advance tumor imaging, provide platform for targeted treatment March 30th, 2015

Wrapping carbon nanotubes in polymers enhances their performance: Scientists at Japan's Kyushu University say polymer-wrapped carbon nanotubes hold much promise in biotechnology and energy applications March 30th, 2015

Next important step toward quantum computer: Scientists at the University of Bonn have succeeded in linking 2 different quantum systems March 30th, 2015

Announcements

Princess Margaret scientists convert microbubbles to nanoparticles: Harnessing light to advance tumor imaging, provide platform for targeted treatment March 30th, 2015

Wrapping carbon nanotubes in polymers enhances their performance: Scientists at Japan's Kyushu University say polymer-wrapped carbon nanotubes hold much promise in biotechnology and energy applications March 30th, 2015

Tokyo Institute of Technology research: Catalyst redefines rate limitations in ammonia production March 30th, 2015

Next important step toward quantum computer: Scientists at the University of Bonn have succeeded in linking 2 different quantum systems March 30th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE