Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > "Sifting" Liquid at the Cellular Level

Abstract:
Drexel University engineers continue to drive research into the use of carbon nanotubes, straw-like structures that are more than 1,000 times thinner than a single human hair. Their most recent development uses the tiny tubes to separate liquids within a solution.

"Sifting" Liquid at the Cellular Level

Philadelphia, PA | Posted on July 17th, 2012

The researchers have shown that individual carbon nanotubes can act as a separation channel that would force two differing molecules to separate as easily as oil and water. For example, the molecules that comprise two chemically distinct liquids will interact differently with the walls of the nanotube as the liquids flow through it. This will cause one of the liquids to drain through the nanoscale straw faster than the other, thus forcing a separation between the two liquids.

This technology could prove useful in a number of applications, including forensic studies with very small sample sizes and studying molecules extracted from individual cells. Forensic experts would be able to analyze trace evidence, even down to a single cell or invisible stains.

"We believe that this research will lead to development of tools for analysis on single living cells and push the limits of analytical chemistry to even smaller scales and to single organelle columns," said Dr. Yury Gogotsi, director of the A.J. Drexel Nanotechnology Institute.

Gogotsi and Dr. Gary Friedman, director of the Drexel Plasma Medicine Lab and a professor of electrical and computer engineering, were the lead researchers on a study about applications of nanotubes for cellular chromatography that was recently published in Nature Publishing Group's Scientific Reports. The research was funded by a grant from W.M. Keck Foundation and the National Science Foundation's National Interdisciplinary Research Teams program.

The carbon nanotubes used in this study measure as small as 70 nanometers in outer diameter and are currently the smallest chromatography columns ever made. The carbon nanotube columns are mechanically robust and are able to withstand repeated bending and compression. These characteristics are vital for applications at the cellular level, as the tiny tubes' durability allows them to penetrate cell membranes.

Continued nanotube research by Drexel engineers will examine the development of electrochemical and optical tools.

####

For more information, please click here

Contacts:
Britt Faulstick

215-895-2617
Mobile: 215-796-5161

Copyright © Drexel University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The full text of the report can be viewed here:

Related News Press

News and information

ANU invention to inspire new night-vision specs December 7th, 2016

Arrowhead Pharmaceuticals to Webcast Fiscal 2016 Year End Results December 7th, 2016

Journal Nanotechnology Progress International (JONPI), newest edition out December 7th, 2016

In IEDM 2016 Keynote, Leti CEO Says ‘Hyperconnectivity’, Human-focused Research and the IOT Promise Profound, Positive Changes December 7th, 2016

Law enforcement/Anti-Counterfeiting/Security/Loss prevention

ANU invention to inspire new night-vision specs December 7th, 2016

Forensics

Researchers harness DNA as the engine of super-efficient nanomachine: New platform detects traces of everything from bacteria to viruses, cocaine and metals July 10th, 2016

NIST simulates fast, accurate DNA sequencing through graphene nanopore January 19th, 2016

Nanoparticles give up forensic secrets October 2nd, 2014

Nanotubes/Buckyballs/Fullerenes

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Cutting-edge nanotechnologies are breaking into industries November 18th, 2016

Hybrid nanostructures hold hydrogen well: Rice University scientists say boron nitride-graphene hybrid may be right for next-gen green cars October 25th, 2016

Discoveries

ANU invention to inspire new night-vision specs December 7th, 2016

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Tokyo Institute of Technology research: 3D solutions to energy savings in silicon power transistors December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Announcements

ANU invention to inspire new night-vision specs December 7th, 2016

Arrowhead Pharmaceuticals to Webcast Fiscal 2016 Year End Results December 7th, 2016

Journal Nanotechnology Progress International (JONPI), newest edition out December 7th, 2016

In IEDM 2016 Keynote, Leti CEO Says ‘Hyperconnectivity’, Human-focused Research and the IOT Promise Profound, Positive Changes December 7th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project