Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Weak light can now be used for applications as well - FOM focus group harvests infrared light

Diagram of the nanocrystal with infrared-absorbing antennae. NIR = near infrared, ET = energy transfer, VIS = emission of visible light.
Diagram of the nanocrystal with infrared-absorbing antennae. NIR = near infrared, ET = energy transfer, VIS = emission of visible light.

Abstract:
Chemists and materials scientists from the University of Groningen and the FOM Foundation have found a way of ‘harvesting‘ infrared light more efficiently. For this they use special molecules, which act as light antennae to capture the energy from weak infrared light. The antennae transmit the energy to the nanoparticles they are attached to. These particles subsequently convert two weak captured photons into a single strong, energy-rich photon, a process termed upconversion. The new antennae molecules amplify this process 3300 times, which represents a considerable improvement for solar cells or medical imaging techniques, for example. The research was published on 15 July 2012 on the website of the journal Nature Photonics.

Weak light can now be used for applications as well - FOM focus group harvests infrared light

Groningen, The Netherlands | Posted on July 17th, 2012

Infrared light has too little energy to release electrons in solar cells, for example. This relatively weak light is therefore lost. One possible way of still being able to use infrared light is ‘upconversion': ‘adding up' the energy of two weak photons to produce a single stronger photon (visible light).

Factor of 3300 increase

"There are inorganic materials made from rare earth metals that can facilitate this upconversion process," explains University of Groningen Professor of Organic Chemistry Kees Hummelen, who leads the FOM-focus group 'Next generation organic photovoltaics'. "However these materials absorb very few infrared photons. We have therefore attached organic molecules to them as antennae that can capture these photons and transmit the energy to the upconversion material. With this, the entire process of infrared absorption, upconversion and the emission of visible light is being increased by a factor of 3300."

Harvest

Hummelen's group is trying to further increase the harvest of infrared photons. "Even with our antennae we still only capture a limited amount of the infrared light. And even better yield can be obtained," predicts Hummelen. However the process of upconversion inside the nanocrystal is still rather inefficient. "Two photons must come together in the material within a short space of time. In practice the efficiency of this process is still very low. However the harvest is already much better, so step 1 has been achieved!" says Hummelen. Therefore, the work of the researchers in Groningen is mainly a proof that infrared photons can be harvested by means of upconversion.

Solar cells

The most obvious application is in solar cells, as about half of all the solar energy reaching the Earth's surface consists of infrared light. "A German group is going to incorporate our nanocrystals with antennae in solar cells to test these in practice," says Hummelen, who since last year has led a FOM focus group researching the new generation of organic solar cells. By capturing more infrared light, solar cells will be able to pass the so-called Shockley-Queisser efficiency limit. For solar cells that consist of one color that limit is 32 percent.

Medical images

The system for upconversion of infrared light also has other applications, including medical imaging techniques. "Infrared light penetrates further into biological tissues than visible light. If you allow compounds that carry out upconversion to bind to specific cells in tissues then you can make images using infrared light," explains Hummelen.

Worlds combined

In the FOM focus group at the University of Groningen researchers combine organic and inorganic chemistry. "These worlds are usually still quite distinct," says Hummelen. "We have brought them together, with this success as the result." They modified an organic dye that can absorb infrared light so that this could be attached as an antenna to a lanthanide nanocrystal. About 60 of these antennae are attached to a single crystal. "If you try to place more on the crystal then they disrupt each other." The antennae capture the infrared energy and transmit it to the nanocrystal, which subsequently uses it to produce energy-richer photons that have enough energy to release an electron in solar cells, for example. "Our inspiration partly came from the photosynthesis complex of plants," explains Hummelen. "There you have a ring of light-absorbing molecules around an active centre."

Zernike Institute for Advanced Materials

The research was largely carried out by FOM PhD student Wenqiang Zou, masters student Jeremio Maduro and postdoc Cindy Visser and took place at the Stratingh Institute for Chemistry and the Zernike Institute for Advanced Materials (ZIAM), both part of the Faculty of Mathematics and Natural Sciences at the University of Groningen. Kees Hummelen and Maxim Pchenitchnikov supervised the work.

Full bibliographic informationNature Photonics, DOI 10.1038/nphoton.2012.158
Broadband Dye-Sensitized Upconversion of Near-IR Light , Wenqiang Zou1, Cindy Visser1, Jeremio A.Maduro1, Maxim S. Pshenichnikov2 and Jan C. Hummelen1,2*, 1Stratingh Institute for Chemistry, University of Groningen, 2Zernike Institute for Advanced Materials, University of Groningen, The Netherlands, Nature Photonics, DOI 10.1038/nphoton.2012.158

####

About University of Groningen
The University of Groningen enjoys an international reputation as a leading research university. The university is utilizing its academic heritage to generate innovation, with the help of cutting-edge facilities. In a work environment that rewards quality and achievement, the university offers balanced study and research paths that vary in intensity to encourage everyone to draw on their individual talents.

For more information, please click here

Contacts:
Fenneke Colstee


Prof. J.C. (Kees) Hummelen

phone +31 50 363 5553
or
dr. M.S. Pchenitchnikov

phone +31 50 363 4159

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

University of Tehran Researchers Invent Non-Enzyme Sensor to Detect Blood Sugar April 23rd, 2014

Gold nanoparticles help target, quantify breast cancer gene segments in a living cell April 23rd, 2014

Study finds long-term survival of human neural stem cells transplanted into primate brain April 23rd, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Imaging

Guo Lab Shows Potential of RNA as Heat-resistant Polymer Material for Nanoarchitectures April 23rd, 2014

Berkeley Lab Researchers Demonstrate First Size-based Chromatography Technique for the Study of Living Cells April 22nd, 2014

MRI, on a molecular scale: Researchers develop system that could one day peer into the atomic structure of individual molecules April 20th, 2014

Oxford Instruments Asylum Research Introduces the MFP-3D InfinityTM AFM Featuring Powerful New Capabilities and Stunning High Performance April 18th, 2014

Discoveries

University of Tehran Researchers Invent Non-Enzyme Sensor to Detect Blood Sugar April 23rd, 2014

Gold nanoparticles help target, quantify breast cancer gene segments in a living cell April 23rd, 2014

Atomic switcheroo explains origins of thin-film solar cell mystery April 23rd, 2014

Characterizing inkjet inks: Malvern Instruments presents new rheological research April 23rd, 2014

Announcements

Characterizing inkjet inks: Malvern Instruments presents new rheological research April 23rd, 2014

NanoSafe, Inc. announces the addition of the Labconco Protector® Glove Box to its NanoSafe Tested™ registry April 23rd, 2014

Study finds long-term survival of human neural stem cells transplanted into primate brain April 23rd, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Energy

Atomic switcheroo explains origins of thin-film solar cell mystery April 23rd, 2014

Like a hall of mirrors, nanostructures trap photons inside ultrathin solar cells April 22nd, 2014

Global leader in solar cell manufacturing eyes New York for major expansion outside of Japan: CNSE and Solar Frontier Explore $700 Million Investment, Job Creation in New York State April 22nd, 2014

Nanoreporters tell 'sour' oil from 'sweet': Rice University's hydrogen sulfide nanoreporters gather intel on oil before pumping April 22nd, 2014

Research partnerships

University of Waterloo Visits China to Strengthen Bonds With Research Partners April 21st, 2014

Novel stapled peptide nanoparticle combination prevents RSV infection, study finds April 17th, 2014

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

Scalable CVD process for making 2-D molybdenum diselenide: Rice, NTU scientists unveil CVD production for coveted 2-D semiconductor April 8th, 2014

Solar/Photovoltaic

Atomic switcheroo explains origins of thin-film solar cell mystery April 23rd, 2014

Like a hall of mirrors, nanostructures trap photons inside ultrathin solar cells April 22nd, 2014

Global leader in solar cell manufacturing eyes New York for major expansion outside of Japan: CNSE and Solar Frontier Explore $700 Million Investment, Job Creation in New York State April 22nd, 2014

High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE