Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Carbon-Based Transistors Ramp Up Speed and Memory for Mobile Devices: Award-winning TAU research attracts electronics industry giants

Abstract:
Though smartphones and tablets are hailed as the hardware of the future, their present-day incarnations have some flaws. Most notoriously, low RAM memory limits the number of applications that can be run at one time and quickly consumes battery power. Now, a Tel Aviv University researcher has found a creative solution to these well-known problems.

Carbon-Based Transistors Ramp Up Speed and Memory for Mobile Devices: Award-winning TAU research attracts electronics industry giants

New York, NY | Posted on July 16th, 2012

As silicon technology gets smaller, creating a large and powerful memory grows harder, say PhD candidate Elad Mentovich and his supervisor Dr. Shachar Richter of TAU's Department of Chemistry and Center for Nanoscience and Nanotechnology. Working with carbon molecules called C60, Mentovich has successfully built a sophisticated memory transistor that can both transfer and store energy, eliminating the need for a capacitor.

This molecular memory transistor, which can be as small as one nanometer, stores and disseminates information at high speed — and it's ready to be produced at existing high-tech fabrication facilities. Major companies in the memory industry have already expressed interest in the technology, says Mentovich, who was awarded first prize for his work at May's European conference in the session on Novel Materials Approaches for Microelectronics of the Materials Research Society. The basis of the technology has been published in the journal Advanced Materials and Applied Physics Letters.

Closing the technology gap

Mobile devices like smartphones and tablets are the computing devices of the post-personal-computer (PC) era, says Mentovich. These devices, which are small and battery operated, are quickly closing the gap with their laptop or desktop ancestors in terms of computing power and storage capacity — but they are lacking in RAM, the run-time memory reserves that computers need to operate various programs. Because current RAM technology is power-hungry and physically large, it doesn't function well in mobile devices. That's where laptops and PC's retain the edge.

As many as 15 years ago, technology experts realized that the problem with shrinking electronics would be the physical size of the hardware needed to make them run. The idea of a sophisticated transistor, which could do the job of both the transistor and the capacitor, was a technological dream — until now.

In order to tackle this technology gap, Mentovich was inspired by the work of Israel Prize winner Prof. Avraham Nitzan of TAU's Department of Chemistry, who proved that, due to its special structure, a molecule can store both an electric charge and information at the same time. To apply this finding to transistors, Mentovich used C60 molecules, made up of 60 carbon atoms, and put them in the channels of a transistor, creating a smaller-than-silicone, high-speed transistor that could also do the job of a capacitor.

Going mobile

Mentovich believes that this technology is sorely needed in today's mobile world. 2012 was the first year in which big technology companies sold more tablets and smartphones than laptops and notebooks combined, he notes. "When this new technology is integrated into future devices, you will have much more memory on your smartphones and tablets, approaching the level of a laptop. With that kind of memory, you'll be able to run applications simultaneously, and because it is low voltage, power consumption will fall and battery life will be longer."

The next step is to find a fabrication facility with the necessary materials to manufacture the transistors. According to Mentovich, the benefit of this product is that with the right equipment, which is standard in high-tech facilities, and his breakthroughs on how to put the transistors together, these molecular memories could be manufactured anywhere. "The distance to implementation is not far," he says.

####

For more information, please click here

Contacts:
George Hunka

212-742-9070

Copyright © American Friends of Tel Aviv University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Heating quantum matter: A novel view on topology: Physicists demonstrate how heating up a quantum system can be used as a universal probe for exotic states of matter August 22nd, 2017

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Chip Technology

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Memory Technology

Surprise discovery in the search for energy efficient information storage August 10th, 2017

Liquid electrolyte contacts for advanced characterization of resistive switching memories July 26th, 2017

Shining rings: A new material emits white light when exposed to electricity: New synthetic approach could spark development of other dynamic materials July 24th, 2017

Pulses of electrons manipulate nanomagnets and store information: Scientists use electron pulses to create and manipulate nanoscale magnetic excitations that can store data July 21st, 2017

Nanotubes/Buckyballs/Fullerenes/Nanorods

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Regulation of two-dimensional nanomaterials: New driving force for lithium-ion batteries July 26th, 2017

Killing cancer in the heat of the moment: A new method efficiently transfers genes into cells, then activates them with light. This could lead to gene therapies for cancers July 9th, 2017

Tests show no nanotubes released during utilisation of nanoaugmented materials June 9th, 2017

Nanoelectronics

GLOBALFOUNDRIES Demonstrates 2.5D High-Bandwidth Memory Solution for Data Center, Networking, and Cloud Applications: Solution leverages 2.5D packaging with low-latency, high-bandwidth memory PHY built on FX-14™ ASIC design system August 9th, 2017

GLOBALFOUNDRIES, Silicon Mobility Deliver the Industry’s First Automotive FPCU to Boost Performance for Hybrid and Electric Vehicles: Silicon Mobility and GF’s 55nm LPx -enabled platform, with SST’s highly-reliable SuperFlash® memory technology, boosts automotive performance, ene August 3rd, 2017

Scientists discover new magnet with nearly massless charge carriers July 29th, 2017

Atomic discovery opens door to greener, faster, smaller electronic circuitry: Scientists find way to correct communication pathways in silicon chips, making them perfect July 27th, 2017

Discoveries

Heating quantum matter: A novel view on topology: Physicists demonstrate how heating up a quantum system can be used as a universal probe for exotic states of matter August 22nd, 2017

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Announcements

Heating quantum matter: A novel view on topology: Physicists demonstrate how heating up a quantum system can be used as a universal probe for exotic states of matter August 22nd, 2017

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Rice U. scientists map ways forward for lithium-ion batteries for extreme environments: Paper details developments toward high-temperature batteries July 27th, 2017

Regulation of two-dimensional nanomaterials: New driving force for lithium-ion batteries July 26th, 2017

Ultrathin device harvests electricity from human motion July 23rd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project