Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Carbon-Based Transistors Ramp Up Speed and Memory for Mobile Devices: Award-winning TAU research attracts electronics industry giants

Abstract:
Though smartphones and tablets are hailed as the hardware of the future, their present-day incarnations have some flaws. Most notoriously, low RAM memory limits the number of applications that can be run at one time and quickly consumes battery power. Now, a Tel Aviv University researcher has found a creative solution to these well-known problems.

Carbon-Based Transistors Ramp Up Speed and Memory for Mobile Devices: Award-winning TAU research attracts electronics industry giants

New York, NY | Posted on July 16th, 2012

As silicon technology gets smaller, creating a large and powerful memory grows harder, say PhD candidate Elad Mentovich and his supervisor Dr. Shachar Richter of TAU's Department of Chemistry and Center for Nanoscience and Nanotechnology. Working with carbon molecules called C60, Mentovich has successfully built a sophisticated memory transistor that can both transfer and store energy, eliminating the need for a capacitor.

This molecular memory transistor, which can be as small as one nanometer, stores and disseminates information at high speed and it's ready to be produced at existing high-tech fabrication facilities. Major companies in the memory industry have already expressed interest in the technology, says Mentovich, who was awarded first prize for his work at May's European conference in the session on Novel Materials Approaches for Microelectronics of the Materials Research Society. The basis of the technology has been published in the journal Advanced Materials and Applied Physics Letters.

Closing the technology gap

Mobile devices like smartphones and tablets are the computing devices of the post-personal-computer (PC) era, says Mentovich. These devices, which are small and battery operated, are quickly closing the gap with their laptop or desktop ancestors in terms of computing power and storage capacity but they are lacking in RAM, the run-time memory reserves that computers need to operate various programs. Because current RAM technology is power-hungry and physically large, it doesn't function well in mobile devices. That's where laptops and PC's retain the edge.

As many as 15 years ago, technology experts realized that the problem with shrinking electronics would be the physical size of the hardware needed to make them run. The idea of a sophisticated transistor, which could do the job of both the transistor and the capacitor, was a technological dream until now.

In order to tackle this technology gap, Mentovich was inspired by the work of Israel Prize winner Prof. Avraham Nitzan of TAU's Department of Chemistry, who proved that, due to its special structure, a molecule can store both an electric charge and information at the same time. To apply this finding to transistors, Mentovich used C60 molecules, made up of 60 carbon atoms, and put them in the channels of a transistor, creating a smaller-than-silicone, high-speed transistor that could also do the job of a capacitor.

Going mobile

Mentovich believes that this technology is sorely needed in today's mobile world. 2012 was the first year in which big technology companies sold more tablets and smartphones than laptops and notebooks combined, he notes. "When this new technology is integrated into future devices, you will have much more memory on your smartphones and tablets, approaching the level of a laptop. With that kind of memory, you'll be able to run applications simultaneously, and because it is low voltage, power consumption will fall and battery life will be longer."

The next step is to find a fabrication facility with the necessary materials to manufacture the transistors. According to Mentovich, the benefit of this product is that with the right equipment, which is standard in high-tech facilities, and his breakthroughs on how to put the transistors together, these molecular memories could be manufactured anywhere. "The distance to implementation is not far," he says.

####

For more information, please click here

Contacts:
George Hunka

212-742-9070

Copyright © American Friends of Tel Aviv University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

Chip Technology

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

Particle zoo in a quantum computer: First experimental quantum simulation of particle physics phenomena June 23rd, 2016

Nanometrics to Participate in the 8th Annual CEO Investor Summit: Investor Event Held Concurrently with SEMICON West 2016 in San Francisco June 22nd, 2016

Memory Technology

Ensuring the future affordability of wind turbines, computers and electric cars June 2nd, 2016

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Hybrid nanoantennas -- next-generation platform for ultradense data recording April 28th, 2016

Magnetic vortices defy temperature fluctuations: Common magnetic mineral is reliable witness to Earth's history April 19th, 2016

Nanotubes/Buckyballs/Fullerenes

Nanotubes' 'stuffing' as is: A scientist from the Lomonosov Moscow State University studied the types of carbon nanotubes' 'stuffing' June 2nd, 2016

Programmable materials find strength in molecular repetition May 23rd, 2016

Nanotubes are beacons in cancer-imaging technique: Rice University researchers use spectral triangulation to pinpoint location of tumors May 21st, 2016

Unveiling the electron's motion in a carbon nanocoil: Development of a precise resistivity measurement system for quasi-one-dimensional nanomaterials using a focused ion beam May 16th, 2016

Nanoelectronics

Soft decoupling of organic molecules on metal June 23rd, 2016

Tailored DNA shifts electrons into the 'fast lane': DNA nanowire improved by altering sequences June 22nd, 2016

Scientists engineer tunable DNA for electronics applications June 21st, 2016

Novel energy inside a microcircuit chip: VTT developed an efficient nanomaterial-based integrated energy June 10th, 2016

Discoveries

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

Announcements

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Stanford researchers find new ways to make clean hydrogen and rechargable zinc batteries June 18th, 2016

Efficient hydrogen production made easy: Sticking electrons to a semiconductor with hydrazine creates an electrocatalyst June 17th, 2016

A New Approach To Building Efficient Thermoelectric Nanomaterials June 17th, 2016

Novel energy inside a microcircuit chip: VTT developed an efficient nanomaterial-based integrated energy June 10th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic