Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > World Record Neutron Beam at Los Alamos National Laboratory New Method Has Potential to Advance Materials Measurement

Abstract:
Using a one-of-a-kind laser system at Los Alamos National Laboratory, scientists have created the largest neutron beam ever made by a short-pulse laser, breaking a world record. Neutron beams are usually made with particle accelerators or nuclear reactors and are commonly used in a wide variety of scientific research, particularly in advanced materials science.

World Record Neutron Beam at Los Alamos National Laboratory New Method Has Potential to Advance Materials Measurement

Los Alamos, NM | Posted on July 10th, 2012

Using the TRIDENT laser, a unique and powerful 200 trillion-watt short-pulse laser, scientists from Los Alamos, the Technical University of Darmstadt, Germany, and Sandia National Laboratories focus high-intensity light on an ultra-thin plastic sheet infused with an isotope of hydrogen called deuterium.

The laser light — 200 quintillion watts per square centimeter, equivalent to focusing all of the light coming from the sun to the earth (120,000 terawatts) onto the tip of a pencil — interacts with the plastic sheet, creating a plasma, an electrically charged gas. A quintillion is a one with 18 zeros after it.

The plasma then accelerates large numbers of deuterons — the nucleus of the deuterium atom — into a sealed beryllium target, converting the deuterons into a neutron beam. Using a unique property of plasmas called relativistic transparency, the deuterons are accelerated in just one millimeter rather than the many meters required by standard accelerator technologies.

"So far only at TRIDENT has this new plasma acceleration mechanism been successfully implemented," said Markus Roth from the Technical University of Darmstadt, who serves as the 2012 Rosen Scholar at Los Alamos. "This result is the world's record for short-pulse laser generated neutron flux, four quintillion neutrons per square centimeter for an object one centimeter from the source. In this generation scheme, the neutrons are emitted along the direction of the initial laser beam and can reach very high energies, in excess of 50 million electron volts."

According to Roth, the new record is five times larger than the previous record and required less than a quarter of the laser energy.

"Neutrons are a unique probe with many scientific applications," said Frank Merrill of LANL's neutron science and technology group. "Neutrons are used to study fundamental properties of the universe, advanced materials, and have potential applications such as active interrogation of cargo containers, monitoring for clandestine nuclear explosives at border crossings, and as a test bed for fusion-relevant neutron diagnostics, the initial impetus for this study."

This record neutron beam has the speed and energy range that makes it an ideal candidate for radiography and a wide variety of high-energy-density physics studies.

"An object placed one centimeter behind the source would be exposed to more than 40 neutrons per square micrometer (one millionth of a meter) in less than a nanosecond (one billionth of a second) making it an impressive probe for radiography applications," said Merrill.

"Also, for the first time, in these experiments a neutron image driven by a short-pulse laser was realized and showed excellent agreement with numerical calculations," said Roth. Using short-pulse lasers for the production of neutrons can open the field of neutron research to universities, and a broader research community in general.

This project combined the expertise of LANL‘s Los Alamos Neutron Science Center (LANSCE) neutron science group with Physics division's plasma physicists, TRIDENT laser scientists, and scientists developing neutron detection diagnostics to be fielded at the National Ignition Facility. Scientists from Sandia provided neutron yield and nuclear activation measurements.

Trident Target caption: Tom Hurry of Plasma Physics adjusts the target positioner and particle beam diagnostics prior to an experiment at Trident.

####

About Los Alamos National Laboratory
Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, The Babcock & Wilcox Company, and URS for the Department of Energy’s National Nuclear Security Administration.

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.

For more information, please click here

Contacts:
Kevin Roark
505-665-9202

Copyright © Los Alamos National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Imaging

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

New approach to determining how atoms are arranged in materials August 25th, 2016

News and information

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Laboratories

A new way to display the 3-D structure of molecules: Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples August 21st, 2016

Scientists uncover origin of high-temperature superconductivity in copper-oxide compound: Analysis of thousands of samples reveals that the compound becomes superconducting at an unusually high temperature because local electron pairs form a 'superfluid' that flows without resist August 19th, 2016

Let's roll: Material for polymer solar cells may lend itself to large-area processing: 'Sweet spot' for mass-producing polymer solar cells may be far larger than dictated by the conventional wisdom August 12th, 2016

NREL technique leads to improved perovskite solar cells August 11th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

New approach to determining how atoms are arranged in materials August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Nanomedicine

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

50 years after the release of the film 'Fantastic Voyage,' science upstages fiction: Science upstages fiction with nanorobotic agents designed to travel in the human body to treat cancer August 25th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

Discoveries

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Announcements

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

Tools

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

50 years after the release of the film 'Fantastic Voyage,' science upstages fiction: Science upstages fiction with nanorobotic agents designed to travel in the human body to treat cancer August 25th, 2016

University of Puerto Rico and NASA back in the news – XEI reports August 23rd, 2016

Spider silk: Mother Nature's bio-superlens August 22nd, 2016

Photonics/Optics/Lasers

Silicon nanoparticles trained to juggle light: Research findings prove the capabilities of silicon nanoparticles for flexible data processing in optical communication systems August 25th, 2016

AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design August 25th, 2016

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

Hexagonal boron nitride semiconductors enable cost-effective detection of neutron signals: Texas Tech University researchers demonstrate hexagonal boron nitride semiconductors as a cost-effective alternative for inspecting overseas cargo containers entering US ports August 17th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic