Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > JPK reports on the research in the Marseille INSERM/CNRS laboratories where the NanoWizard AFM system is being used for cell studies

Dr Pierre-Henri Puech (inset) and his JPK NanoWizard® AFM system (INSERM/CNRS)
Dr Pierre-Henri Puech (inset) and his JPK NanoWizard® AFM system (INSERM/CNRS)

Abstract:
JPK Instruments, a world-leading manufacturer of nanoanalytic instrumentation for research in life sciences and soft matter, reports on the use of the NanoWizard® AFM system at the INSERM/CNRS Laboratories in Marseille, France.

JPK reports on the research in the Marseille INSERM/CNRS laboratories where the NanoWizard AFM system is being used for cell studies

Berlin, Germany | Posted on July 10th, 2012

The Laboratory of Cell Adhesion and Inflammation is located in Marseille as part of the INSERM/CNRS complex on the Luminy campus. It is a multidisciplinary research unit comprised of investigators with backgrounds in physics, biology and medicine. Their aim is to adapt physical concepts and methodologies to the understanding of cell function, notably cell adhesion in the immune system, with the goal of applying the results of this fundamental research to relevant clinical problems.

Dr Pierre-Henri Puech is an INSERM staff scientist in the group of Pierre Bongrand working on forces at the molecular and cellular level to determine what are the physical cues that cells integrate in feeling and understanding their environment. He works on describing, among other topics, what are the physical parameters that a T cell measures when scanning an antigen presenting cell (APC). This is to determine whether the cell or the organism is facing an external perturbation such as a virus invasion or modification due to deterioration of cells, such as via cancerous transformation. Since this recognition goes through the interaction between the T cell receptor (TCR) and a peptide presenting protein (pMHC) at the surface of the APC, is it the duration of the bond between the pMHC and TCR (or off rate), its strength, its on-rate or the interaction with the cytoskeleton that is the determining mechanisms of the read-out. Using fluorescence microscopy coupled to AFM, the question "how does this signal, mechanical or adhesive / recognition get integrated by the cell in order to understand and take a decision to change its function (for example either becoming activated or not)" can be addressed using phosphorylation or calcium reporting dyes. Such approaches are extended to cell cancer studies and to parasite / host interactions.

This is predominantly fundamental research work where Dr Puech is seeking to understand how cells physically understand the world they are living in and how they "play" in this world - how they function: either in a positive role (e.g. T cells) or a negative one (cancerous cells or parasites).

Before adding AFM to his techniques, Dr Puech used various micropipette-based techniques such as Biomembrane Force Probe, fluorescence microscopy, interference microscopy and simple microfluidic devices. In talking about working with JPK and their NanoWizard AFM system, Dr Puech says "It is simple and robust to use. It is designed for biological applications. It is particularly user friendly so that a biology student with no knowledge in instrumentation can learn it in less than a month. The AFM can be easily coupled to other techniques such as optics. I like the software because of it being Linux-based with open access. It comes with user-friendly force curve and image processing software, and also you can program the system using an easy to learn language (Jython) to follow non-standard procedures. Lastly, I think that JPK's technical support staff is very competent. I like their nice, efficient and rapid approach to helping me and my users."

For more details about JPK's specialist products and applications for the bio and nano sciences, please contact JPK on +49 30533112070, visit the web site: www.jpk.com or see more on Facebook: www.jpk.com/facebook.

####

About JPK Instruments (JPK)
JPK Instruments AG is a world-leading manufacturer of nanoanalytic instruments - particularly atomic force microscope (AFM) systems and optical tweezers - for a broad range of applications reaching from soft matter physics to nano-optics, from surface chemistry to cell and molecular biology. From its earliest days applying atomic force microscope (AFM) technology, JPK has recognized the opportunities provided by nanotechnology for transforming life sciences and soft matter research. This focus has driven JPK's success in uniting the worlds of nanotechnology tools and life science applications by offering cutting-edge technology and unique applications expertise. Headquartered in Berlin and with direct operations in Dresden, Cambridge (UK), Singapore, Tokyo and Paris (France), JPK maintains a global network of distributors and support centers and provides on the spot applications and service support to an ever-growing community of researchers.

For more information, please click here

Contacts:
JPK Instruments AG
Bouchéstrasse 12
Haus 2, Aufgang C
Berlin 12435
Germany
T +49 30533112070
F +49 30 5331 22555
www.jpk.com


Talking Science Limited
39 de Bohun Court
Saffron Walden
Essex CB10 2BA
United Kingdom
T +44(0)1799 521881
M +44(0)7843 012997
www.talking-science.com

Copyright © JPK Instruments (JPK)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Imaging

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Cambridge Nanotherm partners with Inabata for global sales and distribution June 20th, 2017

GLOBALFOUNDRIES Launches 7nm ASIC Platform for Data Center, Machine Learning, and 5G Networks FX-7TM offering leverages the company’s 7nm: FinFET process to deliver best in class IP and Solutions June 13th, 2017

The Zeiss Global Centre in the School of Engineering at the University of Portsmouth uses Deben µXCT stages to characterise the structural competence of biological structures June 13th, 2017

Laboratories

Alloying materials of different structures offers new tool for controlling properties June 19th, 2017

Development of low-dimensional nanomaterials could revolutionize future technologies June 15th, 2017

Nanomedicine

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Learning with light: New system allows optical “deep learning”: Neural networks could be implemented more quickly using new photonic technology June 12th, 2017

Mussels add muscle to biocompatible fibers: Rice University chemists develop hydrogel strings using compound found in sea creatures June 9th, 2017

Making vessels leaky on demand could aid drug delivery:Rice University scientists use magnets and nanoparticles to open, close gaps in blood vessels June 8th, 2017

Announcements

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tools

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Oxford Instruments congratulates Lancaster University for inaugurating the IsoLab, built for studying quantum systems June 20th, 2017

Changing the color of laser light on the femtosecond time scale: How BiCoO3 achieves second harmonic generation June 14th, 2017

Leti Announces Two New Tools for Improving Transportation Comfort, Safety and Efficiency: Wearable Device Measures Stress Responses for Travelers, Pilots and Truck Drivers, While Smartphone App Provides Transit Agencies Broad Data on Transport Modes June 13th, 2017

New-Contracts/Sales/Customers

Park Systems Introduces Park NX12 for Unsurpassed Affordable High Resolution NanoScale Imaging Required for Advanced Analytical Chemistry, Materials Research, and Multi-User Facility June 5th, 2017

UnitySC Announces Wafer Thinning Inspection System; Win from Power Semiconductor IDM for Automotive: Leading IDM Selects New 4See Series Automated Defect Inspection Platform for Power Semiconductor Automotive Applications May 11th, 2017

JPK selects compact tensile stage from Deben for their NanoWizard® AFM platform to broaden capabilities for materials characterisation February 22nd, 2017

Cetim Facility Receives Bruker Contour CMM Dimensional Analysis System: New Optical Coordinate Measurement Technology Enables High-Precision 3D Scanning November 16th, 2016

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project