Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > JPK reports on the research in the Marseille INSERM/CNRS laboratories where the NanoWizard AFM system is being used for cell studies

Dr Pierre-Henri Puech (inset) and his JPK NanoWizard® AFM system (INSERM/CNRS)
Dr Pierre-Henri Puech (inset) and his JPK NanoWizard® AFM system (INSERM/CNRS)

Abstract:
JPK Instruments, a world-leading manufacturer of nanoanalytic instrumentation for research in life sciences and soft matter, reports on the use of the NanoWizard® AFM system at the INSERM/CNRS Laboratories in Marseille, France.

JPK reports on the research in the Marseille INSERM/CNRS laboratories where the NanoWizard AFM system is being used for cell studies

Berlin, Germany | Posted on July 10th, 2012

The Laboratory of Cell Adhesion and Inflammation is located in Marseille as part of the INSERM/CNRS complex on the Luminy campus. It is a multidisciplinary research unit comprised of investigators with backgrounds in physics, biology and medicine. Their aim is to adapt physical concepts and methodologies to the understanding of cell function, notably cell adhesion in the immune system, with the goal of applying the results of this fundamental research to relevant clinical problems.

Dr Pierre-Henri Puech is an INSERM staff scientist in the group of Pierre Bongrand working on forces at the molecular and cellular level to determine what are the physical cues that cells integrate in feeling and understanding their environment. He works on describing, among other topics, what are the physical parameters that a T cell measures when scanning an antigen presenting cell (APC). This is to determine whether the cell or the organism is facing an external perturbation such as a virus invasion or modification due to deterioration of cells, such as via cancerous transformation. Since this recognition goes through the interaction between the T cell receptor (TCR) and a peptide presenting protein (pMHC) at the surface of the APC, is it the duration of the bond between the pMHC and TCR (or off rate), its strength, its on-rate or the interaction with the cytoskeleton that is the determining mechanisms of the read-out. Using fluorescence microscopy coupled to AFM, the question "how does this signal, mechanical or adhesive / recognition get integrated by the cell in order to understand and take a decision to change its function (for example either becoming activated or not)" can be addressed using phosphorylation or calcium reporting dyes. Such approaches are extended to cell cancer studies and to parasite / host interactions.

This is predominantly fundamental research work where Dr Puech is seeking to understand how cells physically understand the world they are living in and how they "play" in this world - how they function: either in a positive role (e.g. T cells) or a negative one (cancerous cells or parasites).

Before adding AFM to his techniques, Dr Puech used various micropipette-based techniques such as Biomembrane Force Probe, fluorescence microscopy, interference microscopy and simple microfluidic devices. In talking about working with JPK and their NanoWizard AFM system, Dr Puech says "It is simple and robust to use. It is designed for biological applications. It is particularly user friendly so that a biology student with no knowledge in instrumentation can learn it in less than a month. The AFM can be easily coupled to other techniques such as optics. I like the software because of it being Linux-based with open access. It comes with user-friendly force curve and image processing software, and also you can program the system using an easy to learn language (Jython) to follow non-standard procedures. Lastly, I think that JPK's technical support staff is very competent. I like their nice, efficient and rapid approach to helping me and my users."

For more details about JPK's specialist products and applications for the bio and nano sciences, please contact JPK on +49 30533112070, visit the web site: www.jpk.com or see more on Facebook: www.jpk.com/facebook.

####

About JPK Instruments (JPK)
JPK Instruments AG is a world-leading manufacturer of nanoanalytic instruments - particularly atomic force microscope (AFM) systems and optical tweezers - for a broad range of applications reaching from soft matter physics to nano-optics, from surface chemistry to cell and molecular biology. From its earliest days applying atomic force microscope (AFM) technology, JPK has recognized the opportunities provided by nanotechnology for transforming life sciences and soft matter research. This focus has driven JPK's success in uniting the worlds of nanotechnology tools and life science applications by offering cutting-edge technology and unique applications expertise. Headquartered in Berlin and with direct operations in Dresden, Cambridge (UK), Singapore, Tokyo and Paris (France), JPK maintains a global network of distributors and support centers and provides on the spot applications and service support to an ever-growing community of researchers.

For more information, please click here

Contacts:
JPK Instruments AG
Bouchéstrasse 12
Haus 2, Aufgang C
Berlin 12435
Germany
T +49 30533112070
F +49 30 5331 22555
www.jpk.com


Talking Science Limited
39 de Bohun Court
Saffron Walden
Essex CB10 2BA
United Kingdom
T +44(0)1799 521881
M +44(0)7843 012997
www.talking-science.com

Copyright © JPK Instruments (JPK)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

Imaging

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Aspen Aerogels to Present at the Cowen and Company Technology, Media & Telecom Conference May 21st, 2015

Samtec, Global Provider of Interconnect Systems, Joins IRT Nanoelec Silicon Photonics Program May 21st, 2015

Laboratories

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

Nanomedicine

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Researchers develop new way to manufacture nanofibers May 21st, 2015

Announcements

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Tools

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Nanometrics Announces Live Webcast of Upcoming Investor and Analyst Day May 20th, 2015

Taking control of light emission: Researchers find a way of tuning light waves by pairing 2 exotic 2-D materials May 20th, 2015

DELMIC announces a workshop hosted by Phenom World on Integrated CLEM to be held on Wednesday June 24th at the Francis Crick Institute (Lincoln Inn Fields Laboratory). May 19th, 2015

New-Contracts/Sales/Customers

Argonne chooses Beneq’s TFS 500 Atomic Layer Deposition System: Modularity and flexibility make for a natural choice May 14th, 2015

New JEOL E-Beam Lithography System to Enhance Quantum NanoFab Capabilities May 6th, 2015

FEI Partners With the George Washington University to Equip New Science & Engineering Hall: Suite of new high-performance microscopes will be used for cutting-edge experiments at GW’s new research facility April 29th, 2015

Renishaw Raman systems used to study 2D materials at Boston University, Massachusetts, USA. April 28th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project