Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Tiny bubbles snap carbon nanotubes like twigs: Rice University study details exactly how nanotubes bend and break

The mechanism by which carbon nanotubes break or bend under the influence of bubbles during sonication is the topic of a new paper led by researchers at Rice University. The team found that short nanotubes are drawn end-first into collapsing bubbles, stretching them, while longer ones are more prone to breakage. 

CREDIT:Pasquali Lab/Rice University
The mechanism by which carbon nanotubes break or bend under the influence of bubbles during sonication is the topic of a new paper led by researchers at Rice University. The team found that short nanotubes are drawn end-first into collapsing bubbles, stretching them, while longer ones are more prone to breakage.

CREDIT:Pasquali Lab/Rice University

Abstract:
What's 100 times stronger than steel, weighs one-sixth as much and can be snapped like a twig by a tiny air bubble? The answer is a carbon nanotube -- and a new study by Rice University scientists details exactly how the much-studied nanomaterials snap when subjected to ultrasonic vibrations in a liquid.

Tiny bubbles snap carbon nanotubes like twigs: Rice University study details exactly how nanotubes bend and break

Houston, TX | Posted on July 9th, 2012

"We find that the old saying 'I will break but not bend' does not hold at the micro- and nanoscale," said Rice engineering researcher Matteo Pasquali, the lead scientist on the study, which appears this month in the Proceedings of the National Academy of Sciences.

Carbon nanotubes -- hollow tubes of pure carbon about as wide as a strand of DNA -- are one of the most-studied materials in nanotechnology. For well over a decade, scientists have used ultrasonic vibrations to separate and prepare nanotubes in the lab. In the new study, Pasquali and colleagues show how this process works -- and why it's a detriment to long nanotubes. That's important for researchers who want to make and study long nanotubes.

"We found that long and short nanotubes behave very differently when they are sonicated," said Pasquali, professor of chemical and biomolecular engineering and of chemistry at Rice. "Shorter nanotubes get stretched while longer nanotubes bend. Both mechanisms can lead to breaking."

Discovered more than 20 years ago, carbon nanotubes are one of the original wonder materials of nanotechnology. They are close cousins of the buckyball, the particle whose 1985 discovery at Rice helped kick off the nanotechnology revolution.

Nanotubes can be used in paintable batteries and sensors, to diagnose and treat disease, and for next-generation power cables in electrical grids. Many of the optical and material properties of nanotubes were discovered at Rice's Smalley Institute for Nanoscale Science and Technology, and the first large-scale production method for making single-wall nanotubes was discovered at Rice by the institute's namesake, the late Richard Smalley.

"Processing nanotubes in liquids is industrially important but it's quite difficult because they tend to clump together," co-author Micah Green said. "These nanotube clumps won't dissolve in common solvents, but sonication can break these clumps apart in order to separate, i.e., disperse, the nanotubes."

Newly grown nanotubes can be a thousand times longer than they are wide, and although sonication is very effective at breaking up the clumps, it also makes the nanotubes shorter. In fact, researchers have developed an equation called a "power law" that describes how dramatic this shortening will be. Scientists input the sonication power and the amount of time the sample will be sonicated, and the power law tells them the average length of the nanotubes that will be produced. The nanotubes get shorter as power and exposure time increase.

"The problem is that there are two different power laws that match with separate experimental findings, and one of them produces a length that's a good deal shorter than the other," Pasquali said. "It's not that one is correct and the other is wrong. Each has been verified experimentally, so it's a matter of understanding why. Philippe Poulin first exposed this discrepancy in the literature and brought the problem to my attention when I was visiting his lab three years ago."

To investigate this discrepancy, Pasquali and study co-authors Guido Pagani, Micah Green and Poulin set out to accurately model the interactions between the nanotubes and the sonication bubbles. Their computer model, which ran on Rice's Cray XD1 supercomputer, used a combination of fluid dynamics techniques to accurately simulate the interaction. When the team ran the simulations, they found that longer tubes behaved very differently from their shorter counterparts.

"If the nanotube is short, one end will get drawn down by the collapsing bubble so that the nanotube is aligned toward the center of the bubble," Pasquali said. "In this case, the tube doesn't bend, but rather stretches. This behavior had been previously predicted, but we also found that long nanotubes did something unexpected. The model showed how the collapsing bubble drew longer nanotubes inward from the middle, bending them and snapping them like twigs."

Pasquali said the model shows how both power laws can each be correct: One is describing a process that affects longer nanotubes and another describes a process that affects shorter ones.

"It took some flexibility to understand what was happening," Pasquali said. "But the upshot is that we have a very accurate description of what happens when nanotubes are sonicated."

Study co-authors include Pagani, formerly a visiting scholar at Rice, who studied the sonication process as part of his master's thesis research; Green, a former Evans Attwell-Welch Postdoctoral Researcher at Rice who is now a faculty member at Texas Tech University; and Poulin, research director at the Centre National de la Recherche Scientifique and a faculty member at the University of Bordeaux in Pessac, France.

The research was supported by the Air Force Office of Scientific Research, the Air Force Research Laboratory, the Welch Foundation's Evans Attwell-Welch Fellowship Program, the National Science Foundation, Cray, AMD, Rice's Ken Kennedy Institute for Information Technology and the Texas Tech University High Performance Computing Center.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is known for its "unconventional wisdom." With 3,708 undergraduates and 2,374 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 4 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to www.rice.edu/nationalmedia/Rice.pdf.

For more information, please click here

Contacts:
Jeff Falk
713-348-6775


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

A copy of the PNAS paper is available at:

Related News Press

News and information

Leti to Demo Wristband with Embedded Sensors to Diagnose Sleep Apnea: APNEAband, Which Will Be Demonstrated at CES 2018, Also Monitors Mountain Sickness, Dehydration, Dialysis Treatment Response and Epileptic Seizures December 12th, 2017

Leti Develops World’s First Micro-Coolers for CERN Particle Detectors: Leti Design, Fabrication and Packaging Expertise Extends to Very Large Scientific Instruments December 11th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

JPK Instruments announce partnership with Swiss company, Cytosurge AG. The partnership makes Cytosurge’s FluidFM® technology available on the JPK NanoWizard® AFM platform December 8th, 2017

Physics

Leti Develops World’s First Micro-Coolers for CERN Particle Detectors: Leti Design, Fabrication and Packaging Expertise Extends to Very Large Scientific Instruments December 11th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Wheat gets boost from purified nanotubes: Rice University toxicity study shows plant growth enhanced by -- but only by -- purified nanotubes December 6th, 2017

Arrowhead Presents New Clinical Data Demonstrating a Sustained Host Response in Hepatitis B Patients Following RNAi Therapy — Up to 5.0 log10 reduction in HBsAg observed; data presented at HEP DART 2017 — December 6th, 2017

Chinese market opens up for Carbodeon nanodiamonds: Carbodeon granted Chinese Patent for Nanodiamond-containing Thermoplastic Thermal Compounds December 4th, 2017

Researchers advance technique to detect ovarian cancer: Rice, MD Anderson use fluorescent carbon nanotube probes to achieve first in vivo success November 30th, 2017

Nanotubes/Buckyballs/Fullerenes/Nanorods

Scientists make transparent materials absorb light December 1st, 2017

Researchers advance technique to detect ovarian cancer: Rice, MD Anderson use fluorescent carbon nanotube probes to achieve first in vivo success November 30th, 2017

NanoSummit in Luxembourg: single wall carbon nanotubes have entered our lives as we approach a nanoaugmented future November 23rd, 2017

Fine felted nanotubes : Research team of Kiel University develops new composite material made of carbon nanotubes November 22nd, 2017

Nanomedicine

Leti to Demo Wristband with Embedded Sensors to Diagnose Sleep Apnea: APNEAband, Which Will Be Demonstrated at CES 2018, Also Monitors Mountain Sickness, Dehydration, Dialysis Treatment Response and Epileptic Seizures December 12th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Arrowhead Presents New Clinical Data Demonstrating a Sustained Host Response in Hepatitis B Patients Following RNAi Therapy — Up to 5.0 log10 reduction in HBsAg observed; data presented at HEP DART 2017 — December 6th, 2017

Copper will replace toxic palladium and expensive platinum in the synthesis of medications: The effectiveness of copper nanoparticles as a catalyst has been proven December 5th, 2017

Sensors

Leti to Demo Wristband with Embedded Sensors to Diagnose Sleep Apnea: APNEAband, Which Will Be Demonstrated at CES 2018, Also Monitors Mountain Sickness, Dehydration, Dialysis Treatment Response and Epileptic Seizures December 12th, 2017

Leti Develops World’s First Micro-Coolers for CERN Particle Detectors: Leti Design, Fabrication and Packaging Expertise Extends to Very Large Scientific Instruments December 11th, 2017

Graphene oxide making any material suitable to create biosensors: Scientists from Tomsk Polytechnic University have developed a new tool for biomedical research focused on single-cell investigation November 27th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Nanoelectronics

GLOBALFOUNDRIES, Fudan Team to Deliver Next Generation Dual Interface Smart Card November 14th, 2017

Leti Will Present 11 Papers and Host More-than-Moore Technologies Workshop November 14th, 2017

The next generation of power electronics? Gallium nitride doped with beryllium: How to cut down energy loss in power electronics? The right kind of doping November 9th, 2017

Researchers bring optical communication onto silicon chips: Ultrathin films of a semiconductor that emits and detects light can be stacked on top of silicon wafers October 23rd, 2017

Discoveries

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

Wheat gets boost from purified nanotubes: Rice University toxicity study shows plant growth enhanced by -- but only by -- purified nanotubes December 6th, 2017

Materials/Metamaterials

Creating a new kind of metallic glass December 7th, 2017

Copper will replace toxic palladium and expensive platinum in the synthesis of medications: The effectiveness of copper nanoparticles as a catalyst has been proven December 5th, 2017

Chinese market opens up for Carbodeon nanodiamonds: Carbodeon granted Chinese Patent for Nanodiamond-containing Thermoplastic Thermal Compounds December 4th, 2017

Scientists make transparent materials absorb light December 1st, 2017

Announcements

Leti to Demo Wristband with Embedded Sensors to Diagnose Sleep Apnea: APNEAband, Which Will Be Demonstrated at CES 2018, Also Monitors Mountain Sickness, Dehydration, Dialysis Treatment Response and Epileptic Seizures December 12th, 2017

Leti Develops World’s First Micro-Coolers for CERN Particle Detectors: Leti Design, Fabrication and Packaging Expertise Extends to Very Large Scientific Instruments December 11th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

Military

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

Promising sensors for submarines, mines and spacecraft: MSU scientists are developing nanostructured gas sensors that would work at room temperature November 10th, 2017

Leti Joins DARPA-Funded Project to Develop Implantable Device for Restoring Vision November 9th, 2017

Nanoshells could deliver more chemo with fewer side effects: In vitro study verifies method for remotely triggering release of cancer drugs November 8th, 2017

Energy

Inorganic-organic halide perovskites for new photovoltaic technology November 6th, 2017

Dendritic fibrous nanosilica: all-in-one nanomaterial for energy, environment and health November 4th, 2017

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Industrial

Silicon Sense first to achieve EPA approval to import detonation nanodiamonds to US: Nanodiamond additives can significantly improve the performance of metal finishing, polymer thermal and mechanical compounds, polymer coatings, CMP polishing and a range of other applications November 29th, 2017

A new way to mix oil and water: Condensation-based method developed at MIT could create stable nanoscale emulsions November 8th, 2017

Researchers greenlight gas detection at room temperature October 26th, 2017

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

Printing Flexible Graphene Supercapacitors December 1st, 2017

Dendritic fibrous nanosilica: all-in-one nanomaterial for energy, environment and health November 4th, 2017

New Atomic Force Microscope to study piezoelectrics at the nanoscale October 29th, 2017

Photonics/Optics/Lasers

Leti Integrates Hybrid III-V Silicon Lasers on 200mm Wafers with Standard CMOS Process December 6th, 2017

Scientists make transparent materials absorb light December 1st, 2017

Going swimmingly: Biotemplates breakthrough paves way for cheaper nanobots: By using bacterial flagella as a template for silica, researchers have demonstrated an easier way to make propulsion systems for nanoscale swimming robots November 30th, 2017

Fast flowing heat in graphene heterostructures: Surprisingly fast heat flow from graphene to its surrounding November 29th, 2017

Research partnerships

Wheat gets boost from purified nanotubes: Rice University toxicity study shows plant growth enhanced by -- but only by -- purified nanotubes December 6th, 2017

Copper will replace toxic palladium and expensive platinum in the synthesis of medications: The effectiveness of copper nanoparticles as a catalyst has been proven December 5th, 2017

Researchers advance technique to detect ovarian cancer: Rice, MD Anderson use fluorescent carbon nanotube probes to achieve first in vivo success November 30th, 2017

Tiny robots step closer to treating hard-to-reach parts of the body November 25th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project