Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Tiny bubbles snap carbon nanotubes like twigs: Rice University study details exactly how nanotubes bend and break

The mechanism by which carbon nanotubes break or bend under the influence of bubbles during sonication is the topic of a new paper led by researchers at Rice University. The team found that short nanotubes are drawn end-first into collapsing bubbles, stretching them, while longer ones are more prone to breakage. 

CREDIT:Pasquali Lab/Rice University
The mechanism by which carbon nanotubes break or bend under the influence of bubbles during sonication is the topic of a new paper led by researchers at Rice University. The team found that short nanotubes are drawn end-first into collapsing bubbles, stretching them, while longer ones are more prone to breakage.

CREDIT:Pasquali Lab/Rice University

Abstract:
What's 100 times stronger than steel, weighs one-sixth as much and can be snapped like a twig by a tiny air bubble? The answer is a carbon nanotube -- and a new study by Rice University scientists details exactly how the much-studied nanomaterials snap when subjected to ultrasonic vibrations in a liquid.

Tiny bubbles snap carbon nanotubes like twigs: Rice University study details exactly how nanotubes bend and break

Houston, TX | Posted on July 9th, 2012

"We find that the old saying 'I will break but not bend' does not hold at the micro- and nanoscale," said Rice engineering researcher Matteo Pasquali, the lead scientist on the study, which appears this month in the Proceedings of the National Academy of Sciences.

Carbon nanotubes -- hollow tubes of pure carbon about as wide as a strand of DNA -- are one of the most-studied materials in nanotechnology. For well over a decade, scientists have used ultrasonic vibrations to separate and prepare nanotubes in the lab. In the new study, Pasquali and colleagues show how this process works -- and why it's a detriment to long nanotubes. That's important for researchers who want to make and study long nanotubes.

"We found that long and short nanotubes behave very differently when they are sonicated," said Pasquali, professor of chemical and biomolecular engineering and of chemistry at Rice. "Shorter nanotubes get stretched while longer nanotubes bend. Both mechanisms can lead to breaking."

Discovered more than 20 years ago, carbon nanotubes are one of the original wonder materials of nanotechnology. They are close cousins of the buckyball, the particle whose 1985 discovery at Rice helped kick off the nanotechnology revolution.

Nanotubes can be used in paintable batteries and sensors, to diagnose and treat disease, and for next-generation power cables in electrical grids. Many of the optical and material properties of nanotubes were discovered at Rice's Smalley Institute for Nanoscale Science and Technology, and the first large-scale production method for making single-wall nanotubes was discovered at Rice by the institute's namesake, the late Richard Smalley.

"Processing nanotubes in liquids is industrially important but it's quite difficult because they tend to clump together," co-author Micah Green said. "These nanotube clumps won't dissolve in common solvents, but sonication can break these clumps apart in order to separate, i.e., disperse, the nanotubes."

Newly grown nanotubes can be a thousand times longer than they are wide, and although sonication is very effective at breaking up the clumps, it also makes the nanotubes shorter. In fact, researchers have developed an equation called a "power law" that describes how dramatic this shortening will be. Scientists input the sonication power and the amount of time the sample will be sonicated, and the power law tells them the average length of the nanotubes that will be produced. The nanotubes get shorter as power and exposure time increase.

"The problem is that there are two different power laws that match with separate experimental findings, and one of them produces a length that's a good deal shorter than the other," Pasquali said. "It's not that one is correct and the other is wrong. Each has been verified experimentally, so it's a matter of understanding why. Philippe Poulin first exposed this discrepancy in the literature and brought the problem to my attention when I was visiting his lab three years ago."

To investigate this discrepancy, Pasquali and study co-authors Guido Pagani, Micah Green and Poulin set out to accurately model the interactions between the nanotubes and the sonication bubbles. Their computer model, which ran on Rice's Cray XD1 supercomputer, used a combination of fluid dynamics techniques to accurately simulate the interaction. When the team ran the simulations, they found that longer tubes behaved very differently from their shorter counterparts.

"If the nanotube is short, one end will get drawn down by the collapsing bubble so that the nanotube is aligned toward the center of the bubble," Pasquali said. "In this case, the tube doesn't bend, but rather stretches. This behavior had been previously predicted, but we also found that long nanotubes did something unexpected. The model showed how the collapsing bubble drew longer nanotubes inward from the middle, bending them and snapping them like twigs."

Pasquali said the model shows how both power laws can each be correct: One is describing a process that affects longer nanotubes and another describes a process that affects shorter ones.

"It took some flexibility to understand what was happening," Pasquali said. "But the upshot is that we have a very accurate description of what happens when nanotubes are sonicated."

Study co-authors include Pagani, formerly a visiting scholar at Rice, who studied the sonication process as part of his master's thesis research; Green, a former Evans Attwell-Welch Postdoctoral Researcher at Rice who is now a faculty member at Texas Tech University; and Poulin, research director at the Centre National de la Recherche Scientifique and a faculty member at the University of Bordeaux in Pessac, France.

The research was supported by the Air Force Office of Scientific Research, the Air Force Research Laboratory, the Welch Foundation's Evans Attwell-Welch Fellowship Program, the National Science Foundation, Cray, AMD, Rice's Ken Kennedy Institute for Information Technology and the Texas Tech University High Performance Computing Center.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is known for its "unconventional wisdom." With 3,708 undergraduates and 2,374 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 4 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to www.rice.edu/nationalmedia/Rice.pdf.

For more information, please click here

Contacts:
Jeff Falk
713-348-6775


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

A copy of the PNAS paper is available at:

Related News Press

News and information

SEMATECH to Showcase Innovation and Advances in Manufacturing at SEMICON Japan 2014: SEMATECH experts will share the latest techniques, emerging trends and best practices in advanced manufacturing strategies and methodologies November 26th, 2014

Australian startup creates world’s first 100% cotton hydrophobic T-Shirts November 26th, 2014

The mysterious 'action at a distance' between liquid containers November 26th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Physics

The mysterious 'action at a distance' between liquid containers November 26th, 2014

Cooling with the coldest matter in the world November 24th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Lawrence Livermore researchers develop efficient method to produce nanoporous metals November 25th, 2014

Renishaw receives Queen's Award for spectroscopy developments November 25th, 2014

Vegetable oil ingredient key to destroying gastric disease bacteria: In mice, therapeutic nanoparticles dampen H. pylori bacteria and inflammation that lead to ulcers and gastric cancer November 25th, 2014

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Nanotubes/Buckyballs

Tesla NanoCoatings Increasing Use of SouthWest NanoTechnologies Carbon Nanotubes (CNTs) for its Infrastructure Coatings and Paints: High Quality SMW™ Specialty Multi-wall Carbon Nanotubes Incorporated into Teslan®-brand coatings used by Transportation, Oil and Gas Companies November 19th, 2014

Graphene/nanotube hybrid benefits flexible solar cells: Rice University labs create novel electrode for dye-sensitized cells November 17th, 2014

SouthWest NanoTechnologies to Demonstrate 3D Capacitive Touch Sensor Featuring Transparent, Thermoformed Carbon Nanotube Ink at Printed Electronics USA 2014 (Booth J25) -- “Conductive and Semiconducting Single-Wall Carbon Nanotube Inks” will be Topic of Company Presentation November 10th, 2014

Neural Canals Produced in Iran for Recovery of Sciatica Nerve November 8th, 2014

Nanomedicine

Vegetable oil ingredient key to destroying gastric disease bacteria: In mice, therapeutic nanoparticles dampen H. pylori bacteria and inflammation that lead to ulcers and gastric cancer November 25th, 2014

Research reveals how our bodies keep unwelcome visitors out of cell nuclei November 24th, 2014

ASU, IBM move ultrafast, low-cost DNA sequencing technology a step closer to reality November 24th, 2014

An Inside Job: UC-Designed Nanoparticles Infiltrate, Kill Cancer Cells From Within November 24th, 2014

Sensors

Lawrence Livermore researchers develop efficient method to produce nanoporous metals November 25th, 2014

Cooling with the coldest matter in the world November 24th, 2014

Canatu Launches CNB In-Mold Film for Transparent Touch on 3D Surfaces –in Cars, Household Appliances, Wearables, Portables November 20th, 2014

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

Nanoelectronics

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Leti Will Present 17 Papers at 2014 IEDM; the Highest-ever Total Includes Four Invited Papers: Institute also Will Present its Latest Results in Key Technologies and Its Roadmap for Silicon Nano-technologies at Workshop November 13th, 2014

Breakthrough in molecular electronics paves the way for DNA-based computer circuits in the future: DNA-based programmable circuits could be more sophisticated, cheaper and simpler to make October 27th, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Discoveries

The mysterious 'action at a distance' between liquid containers November 26th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Vegetable oil ingredient key to destroying gastric disease bacteria: In mice, therapeutic nanoparticles dampen H. pylori bacteria and inflammation that lead to ulcers and gastric cancer November 25th, 2014

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Materials/Metamaterials

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Lawrence Livermore researchers develop efficient method to produce nanoporous metals November 25th, 2014

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Aromatic food chemistry to the making of copper nanowires November 24th, 2014

Announcements

SEMATECH to Showcase Innovation and Advances in Manufacturing at SEMICON Japan 2014: SEMATECH experts will share the latest techniques, emerging trends and best practices in advanced manufacturing strategies and methodologies November 26th, 2014

Australian startup creates world’s first 100% cotton hydrophobic T-Shirts November 26th, 2014

The mysterious 'action at a distance' between liquid containers November 26th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Military

NRL Scientists Discover Novel Metamaterial Properties within Hexagonal Boron Nitride November 20th, 2014

Two sensors in one: Nanoparticles that enable both MRI and fluorescent imaging could monitor cancer, other diseases November 18th, 2014

Researchers create & control spin waves, lifting prospects for enhanced info processing November 17th, 2014

Penn engineers efficiently 'mix' light at the nanoscale November 17th, 2014

Energy

Lawrence Livermore researchers develop efficient method to produce nanoporous metals November 25th, 2014

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Blu-ray disc can be used to improve solar cell performance: Data storage pattern transferred to solar cell increases light absorption November 25th, 2014

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

Industrial

A*STAR SIMTech wins international award for breaking new ground in actuators: SIMTech invention can be used in an array of industries, and is critical for next generation ultra-precision systems November 24th, 2014

Iranian Experts Clean Uranium-Contaminated Water by Nano-Particles November 23rd, 2014

Biosenta Inc. Updates New Household Disinfectant Testing Results; It Kills 100% of a Broad Range of Deadly Molds, Fungi, Bacteria, and Viruses, Including Ebola and Enterovirus D68 November 20th, 2014

OCSiAl Builds Worldwide Partnership Network November 12th, 2014

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

OCSiAl Builds Worldwide Partnership Network November 12th, 2014

Drexel Engineers Improve Strength, Flexibility of Atom-Thick Films November 11th, 2014

A billion holes can make a battery November 10th, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Photonics/Optics/Lasers

NRL Scientists Discover Novel Metamaterial Properties within Hexagonal Boron Nitride November 20th, 2014

Penn engineers efficiently 'mix' light at the nanoscale November 17th, 2014

'Direct writing' of diamond patterns from graphite a potential technological leap November 5th, 2014

Outsmarting Thermodynamics in Self-assembly of Nanostructures: Berkeley Lab reports method for symmetry-breaking in feedback-driven self-assembly of optical metamaterials November 4th, 2014

Research partnerships

SEMATECH to Showcase Innovation and Advances in Manufacturing at SEMICON Japan 2014: SEMATECH experts will share the latest techniques, emerging trends and best practices in advanced manufacturing strategies and methodologies November 26th, 2014

The mysterious 'action at a distance' between liquid containers November 26th, 2014

Lawrence Livermore researchers develop efficient method to produce nanoporous metals November 25th, 2014

Vegetable oil ingredient key to destroying gastric disease bacteria: In mice, therapeutic nanoparticles dampen H. pylori bacteria and inflammation that lead to ulcers and gastric cancer November 25th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE