Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Tiny bubbles snap carbon nanotubes like twigs: Rice University study details exactly how nanotubes bend and break

The mechanism by which carbon nanotubes break or bend under the influence of bubbles during sonication is the topic of a new paper led by researchers at Rice University. The team found that short nanotubes are drawn end-first into collapsing bubbles, stretching them, while longer ones are more prone to breakage. 

CREDIT:Pasquali Lab/Rice University
The mechanism by which carbon nanotubes break or bend under the influence of bubbles during sonication is the topic of a new paper led by researchers at Rice University. The team found that short nanotubes are drawn end-first into collapsing bubbles, stretching them, while longer ones are more prone to breakage.

CREDIT:Pasquali Lab/Rice University

Abstract:
What's 100 times stronger than steel, weighs one-sixth as much and can be snapped like a twig by a tiny air bubble? The answer is a carbon nanotube -- and a new study by Rice University scientists details exactly how the much-studied nanomaterials snap when subjected to ultrasonic vibrations in a liquid.

Tiny bubbles snap carbon nanotubes like twigs: Rice University study details exactly how nanotubes bend and break

Houston, TX | Posted on July 9th, 2012

"We find that the old saying 'I will break but not bend' does not hold at the micro- and nanoscale," said Rice engineering researcher Matteo Pasquali, the lead scientist on the study, which appears this month in the Proceedings of the National Academy of Sciences.

Carbon nanotubes -- hollow tubes of pure carbon about as wide as a strand of DNA -- are one of the most-studied materials in nanotechnology. For well over a decade, scientists have used ultrasonic vibrations to separate and prepare nanotubes in the lab. In the new study, Pasquali and colleagues show how this process works -- and why it's a detriment to long nanotubes. That's important for researchers who want to make and study long nanotubes.

"We found that long and short nanotubes behave very differently when they are sonicated," said Pasquali, professor of chemical and biomolecular engineering and of chemistry at Rice. "Shorter nanotubes get stretched while longer nanotubes bend. Both mechanisms can lead to breaking."

Discovered more than 20 years ago, carbon nanotubes are one of the original wonder materials of nanotechnology. They are close cousins of the buckyball, the particle whose 1985 discovery at Rice helped kick off the nanotechnology revolution.

Nanotubes can be used in paintable batteries and sensors, to diagnose and treat disease, and for next-generation power cables in electrical grids. Many of the optical and material properties of nanotubes were discovered at Rice's Smalley Institute for Nanoscale Science and Technology, and the first large-scale production method for making single-wall nanotubes was discovered at Rice by the institute's namesake, the late Richard Smalley.

"Processing nanotubes in liquids is industrially important but it's quite difficult because they tend to clump together," co-author Micah Green said. "These nanotube clumps won't dissolve in common solvents, but sonication can break these clumps apart in order to separate, i.e., disperse, the nanotubes."

Newly grown nanotubes can be a thousand times longer than they are wide, and although sonication is very effective at breaking up the clumps, it also makes the nanotubes shorter. In fact, researchers have developed an equation called a "power law" that describes how dramatic this shortening will be. Scientists input the sonication power and the amount of time the sample will be sonicated, and the power law tells them the average length of the nanotubes that will be produced. The nanotubes get shorter as power and exposure time increase.

"The problem is that there are two different power laws that match with separate experimental findings, and one of them produces a length that's a good deal shorter than the other," Pasquali said. "It's not that one is correct and the other is wrong. Each has been verified experimentally, so it's a matter of understanding why. Philippe Poulin first exposed this discrepancy in the literature and brought the problem to my attention when I was visiting his lab three years ago."

To investigate this discrepancy, Pasquali and study co-authors Guido Pagani, Micah Green and Poulin set out to accurately model the interactions between the nanotubes and the sonication bubbles. Their computer model, which ran on Rice's Cray XD1 supercomputer, used a combination of fluid dynamics techniques to accurately simulate the interaction. When the team ran the simulations, they found that longer tubes behaved very differently from their shorter counterparts.

"If the nanotube is short, one end will get drawn down by the collapsing bubble so that the nanotube is aligned toward the center of the bubble," Pasquali said. "In this case, the tube doesn't bend, but rather stretches. This behavior had been previously predicted, but we also found that long nanotubes did something unexpected. The model showed how the collapsing bubble drew longer nanotubes inward from the middle, bending them and snapping them like twigs."

Pasquali said the model shows how both power laws can each be correct: One is describing a process that affects longer nanotubes and another describes a process that affects shorter ones.

"It took some flexibility to understand what was happening," Pasquali said. "But the upshot is that we have a very accurate description of what happens when nanotubes are sonicated."

Study co-authors include Pagani, formerly a visiting scholar at Rice, who studied the sonication process as part of his master's thesis research; Green, a former Evans Attwell-Welch Postdoctoral Researcher at Rice who is now a faculty member at Texas Tech University; and Poulin, research director at the Centre National de la Recherche Scientifique and a faculty member at the University of Bordeaux in Pessac, France.

The research was supported by the Air Force Office of Scientific Research, the Air Force Research Laboratory, the Welch Foundation's Evans Attwell-Welch Fellowship Program, the National Science Foundation, Cray, AMD, Rice's Ken Kennedy Institute for Information Technology and the Texas Tech University High Performance Computing Center.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is known for its "unconventional wisdom." With 3,708 undergraduates and 2,374 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 4 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to www.rice.edu/nationalmedia/Rice.pdf.

For more information, please click here

Contacts:
Jeff Falk
713-348-6775


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

A copy of the PNAS paper is available at:

Related News Press

Physics

Halas wins American Physical Society's Lilienfeld Prize: Rice University nanoscientist honored for pioneering research in plasmonics October 23rd, 2017

News and information

Halas wins American Physical Society's Lilienfeld Prize: Rice University nanoscientist honored for pioneering research in plasmonics October 23rd, 2017

GTC Shanghai Highlights GF’s Momentum in China: Company shares details of technology roadmap and customer adoption in the world’s fastest-growing market for semiconductors October 23rd, 2017

Nanobiotix completes patient inclusion for Phase II/III trial of NBTXR3 in soft tissue sarcoma October 23rd, 2017

Arrowhead Pharmaceuticals Reports Inducement Grants under NASDAQ Marketplace Rule 5635(c)(4) October 23rd, 2017

Govt.-Legislation/Regulation/Funding/Policy

Nanobiotix completes patient inclusion for Phase II/III trial of NBTXR3 in soft tissue sarcoma October 23rd, 2017

Researchers bring optical communication onto silicon chips: Ultrathin films of a semiconductor that emits and detects light can be stacked on top of silicon wafers October 23rd, 2017

Nanotube fiber antennas as capable as copper: Rice University researchers show their flexible fibers work well but weigh much less October 23rd, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Tech’s Contribution Includes Liten’s Knowhow in Magnetic Materials and Simulation And Leti’s Expertise in Wide-bandgap Semiconductors October 20th, 2017

Nanotubes/Buckyballs/Fullerenes/Nanorods

Nanotube fiber antennas as capable as copper: Rice University researchers show their flexible fibers work well but weigh much less October 23rd, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

How to draw electricity from the bloodstream: A one-dimensional fluidic nanogenerator with a high power-conversion efficiency September 11th, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Nanomedicine

Nanobiotix completes patient inclusion for Phase II/III trial of NBTXR3 in soft tissue sarcoma October 23rd, 2017

Arrowhead Pharmaceuticals Reports Inducement Grants under NASDAQ Marketplace Rule 5635(c)(4) October 23rd, 2017

Arrowhead Presents Promising Preclinical Data on Development of ARO-AAT for Treatment of Alpha-1 Liver Disease at Liver Meeting(R) 2017 October 23rd, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Sensors

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Single ‘solitons’ promising for optical technologies October 9th, 2017

Two dimensional materials: Advanced molybdenum selenide near infrared phototransistors September 27th, 2017

Nanoelectronics

Researchers bring optical communication onto silicon chips: Ultrathin films of a semiconductor that emits and detects light can be stacked on top of silicon wafers October 23rd, 2017

Nanometrics Announces Preliminary Results for the Third Quarter of 2017: Quarterly Results Impacted by Delays in Revenue Recognition on Multiple Systems into Japan October 12th, 2017

Seeing the next dimension of computer chips: Researchers image perfectly smooth side-surfaces of 3-D silicon crystals with a scanning tunneling microscope, paving the way for smaller and faster computing devices October 11th, 2017

Columbia engineers invent breakthrough millimeter-wave circulator IC October 6th, 2017

Discoveries

Researchers bring optical communication onto silicon chips: Ultrathin films of a semiconductor that emits and detects light can be stacked on top of silicon wafers October 23rd, 2017

Nanotube fiber antennas as capable as copper: Rice University researchers show their flexible fibers work well but weigh much less October 23rd, 2017

A step closer to understanding quantum mechanics: Swansea University’s physicists develop a new quantum simulation protocol October 22nd, 2017

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Materials/Metamaterials

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

The secret to improving liquid crystal's mechanical performance: Better lubricating properties of lamellar liquid crystals could stem from changing the mobility of their structural dislocations by adding nanoparticles October 13th, 2017

Announcements

Nanobiotix completes patient inclusion for Phase II/III trial of NBTXR3 in soft tissue sarcoma October 23rd, 2017

Arrowhead Pharmaceuticals Reports Inducement Grants under NASDAQ Marketplace Rule 5635(c)(4) October 23rd, 2017

Researchers bring optical communication onto silicon chips: Ultrathin films of a semiconductor that emits and detects light can be stacked on top of silicon wafers October 23rd, 2017

Nanotube fiber antennas as capable as copper: Rice University researchers show their flexible fibers work well but weigh much less October 23rd, 2017

Military

Nanotube fiber antennas as capable as copper: Rice University researchers show their flexible fibers work well but weigh much less October 23rd, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

On the road to fire-free, lithium-ion batteries made with asphalt October 12th, 2017

Energy

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

Industrial

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

A flexible new platform for high-performance electronics September 29th, 2017

GLOBALFOUNDRIES Announces Availability of Embedded MRAM on Leading 22FDX® FD-SOI Platform: Advanced embedded non-volatile memory solution delivers ‘connected intelligence’ by expanding SoC capabilities on the 22nm process node September 20th, 2017

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

On the road to fire-free, lithium-ion batteries made with asphalt October 12th, 2017

Organic/inorganic sulfur may be key for safe rechargeable lithium batteries October 12th, 2017

How to draw electricity from the bloodstream: A one-dimensional fluidic nanogenerator with a high power-conversion efficiency September 11th, 2017

Photonics/Optics/Lasers

Researchers bring optical communication onto silicon chips: Ultrathin films of a semiconductor that emits and detects light can be stacked on top of silicon wafers October 23rd, 2017

A step closer to understanding quantum mechanics: Swansea University’s physicists develop a new quantum simulation protocol October 22nd, 2017

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Research partnerships

Nanotube fiber antennas as capable as copper: Rice University researchers show their flexible fibers work well but weigh much less October 23rd, 2017

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Tech’s Contribution Includes Liten’s Knowhow in Magnetic Materials and Simulation And Leti’s Expertise in Wide-bandgap Semiconductors October 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project