Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > An economical, effective and biocompatible gene therapy strategy promotes cardiac repair

Abstract:
Dr Changfa Guo, Professor Chunsheng Wang and their co-investigators from Zhongshan hospital Fudan University, Shanghai, China have established a novel hyperbranched poly(amidoamine) (hPAMAM) nanoparticle based hypoxia regulated vascular endothelial growth factor (HRE-VEGF) gene therapy strategy which is an excellent substitute for the current expensive and uncontrollable VEGF gene delivery system. This discovery, reported in the June 2012 issue of Experimental Biology and Medicine, provides an economical, feasible and biocompatible gene therapy strategy for cardiac repair.

An economical, effective and biocompatible gene therapy strategy promotes cardiac repair

Shanghai, PR China | Posted on July 6th, 2012

Transplantation of VEGF gene manipulated mesenchymal stem cells (MSCs) has been proposed as a promising therapeutic method for cardiac repair after myocardium infarction. However, the gene delivery system, including the VEGF gene and delivery vehicle, needs to be optimized. On one hand, long-term and uncontrollable VEGF over-expression in vivo has been observed to lead to hemangioma formation instead of functional vessels in animal models. On the other hand, though non-viral gene vector can circumvent the limitations of virus, drawbacks of the current non-viral vectors, such as complex synthesis procedure, limited transfection efficiency and high cytotoxicity, still needs to be overcome.

Co-investigators, Drs. Kai Zhu and Hao Lai, said "Hypoxia response elements were inserted into the promoter region of VEGF gene to form HRE-VEGF, which provided a safer alternative to the conventionally available VEGF gene". "The HRE-VEGF up-regulates gene expression under hypoxic conditions caused by ischemic myocardium and turns it off under normoxia condition when the regional oxygen supply is adequate."

The hPAMAM nanoparticles, which exhibit high gene transfection efficiency and low cytotoxicity during the gene delivery process, can be synthesized by a simpler and more economical one-step/pot polymerization technique. Drs. Zhu and Lai, said "Using the hPAMAM based gene delivery approach, our published and unpublished results explicitly demonstrated that it was an economical, effective and biocompatible gene delivery vehicle".

Dr Guo concluded that "Treatment with hPAMAM-HRE-VEGF transfected MSCs after myocardium infarction improved the myocardial VEGF level, which improved graft MSC survival, increased neovascularization and ultimately improved heart function. And this novel VEGF gene delivery system may have clinical relevance for tissue repair in other ischemic diseases".

Dr. Steve Goodman, Editor-in-Chief of Experimental Biology and Medicine said "Guo and colleagues have provided an exciting new nanoparticle based gene therapy for cardiac repair. This novel approach has great promise for repair of the heart after myocardial infarction."

####

About Society for Experimental Biology and Medicine
Experimental Biology and Medicine is the journal of the Society of Experimental Biology and Medicine. To learn about the benefits of society membership visit www.sebm.org. If you are interested in publishing in the journal please visit ebm.rsmjournals.com/

For more information, please click here

Contacts:
Dr. Changfa Guo

Copyright © Society for Experimental Biology and Medicine

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Nanomedicine

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Discoveries

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Announcements

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic