Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Lumerical Provides Open Access to Simulation Engine in FDTD Solutions 8.0 Release

Abstract:
Lumerical's new FDTD Solutions 8.0 release enables researchers to model liquid crystals and other spatially-varying anisotropic materials, as well as nonlinear, magneto-optical and saturable gain materials.

Lumerical Provides Open Access to Simulation Engine in FDTD Solutions 8.0 Release

Vancouver, Canada | Posted on July 6th, 2012

Lumerical Solutions, Inc. (www.lumerical.com), a global provider of optoelectronic design software, announced today the release of FDTD Solutions 8.0, the leading nanophotonic design environment based on the finite-difference time-domain (FDTD) technique. Release 8.0 extends the material modeling capabilities of prior versions to include the ability to model liquid crystals and other spatially-varying anisotropic materials, and a Flexible Material Plugin (FMP) framework that enables researchers to model a wide variety of other materials, including nonlinear, magneto-optical, and saturable gain materials.

The new FMP framework enables researchers to describe via computer source code a material's polarization and magnetization as a function of the electromagnetic field and other physical quantities. Release 8.0 is expected to contribute to the development of components in the fields of optical switching, integrated magneto-optical polarization control, quantum communications and silicon photonics owing to the wide array of nonlinear effects available in silicon.

Flexible Method Provides Arbitrary Accuracy and Unrestricted Complexity

Modular FMPs can be combined with Lumerical's proprietary Multi-Coefficient Materials (MCMs), providing an extensible design environment for modeling complex nanophotonic systems. With MCMs offering the turn-key ability to generate accurate broadband material models, and the FMP providing an open framework for researchers to add onto those MCMs nonlinearities, gain and other effects of interest, users can build broadband material models offering arbitrary accuracy and unrestricted complexity.

"We've been in discussions with the nonlinear photonics community for years, working to understand their diverse interests and to develop a design environment that can accommodate their needs,"according to Dr. James Pond, Lumerical's CTO. "With the release of FDTD Solutions 8.0, researchers can quickly write a few lines of code to incorporate a Kerr medium into their simulation, or painstakingly develop hundreds of lines of code to model a multi-level atomic system. Either way, when it comes to simulation, with FDTD Solutions 8.0 researchers can focus on developing sophisticated material models while relying on Lumerical for everything else."

"As an existing user of Lumerical's software, I am especially pleased by the new nonlinear optics capabilities available in FDTD Solutions 8.0," according to Professor Robert Boyd of the University of Ottawa in Canada and the University of Rochester in the United States. "Much of my current research entails the design of photonic structures and devices for use in applications such as all-optical switching. The new capabilities of Lumerical will conveniently allow my group to treat both the linear and nonlinear properties of these structures using the same numerical platform."

Native Source Code Fosters Collaboration and Accelerates Innovation

To facilitate the development and sharing of these FMPs, they are written in native C/C++/FORTRAN computer source code and compiled into dynamically linked library plugins for FDTD Solutions. This allows for the open joint development of source code by collaborators, or the restricted sharing of binary material models coded by third-party developers. Validated FMPs developed by external parties that are shared with Lumerical will be included in standard, cross-platform build packages available to the photonics community.

For many established research programs that have already been working on modeling such materials, materials may be introduced into FDTD Solutions 8.0 with minimal modifications to existing source code. "Our team in the Electronics and Photonics Department is specialized in the area of computational electromagnetics for next-generation active devices in the fields of plasmonics, photonics and nanophotonics" according to Dr. E. P. Li, Department Director of Electronics and Photonics at the Institute for High Performance Computing in Singapore. "As pioneers in this field, we are interested to start integrating our existing material algorithms into Lumerical's FDTD framework. We anticipate that this will make our advanced algorithms more accessible to a broad range of end users."

Lumerical is now shipping FDTD Solutions 8.0. Interested parties can download a free, 30-day trial or learn more about FDTD Solutions online at www.lumerical.com/tcad-products/fdtd/.

####

For more information, please click here

Copyright © Lumerical Solutions, Inc.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Ultrathin device harvests electricity from human motion July 23rd, 2017

The July 23 close fly-by of asteroid 2017 BS5 is explored in a Q&A with Dr. John S. Lewis, chief scientist at Deep Space Industries July 23rd, 2017

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Pulses of electrons manipulate nanomagnets and store information: Scientists use electron pulses to create and manipulate nanoscale magnetic excitations that can store data July 21st, 2017

Display technology/LEDs/SS Lighting/OLEDs

Nanoparticles could spur better LEDs, invisibility cloaks July 19th, 2017

Cambridge Nanotherm partners with Inabata for global sales and distribution June 20th, 2017

Software

Nanometrics Introduces SpectraProbe Analysis Software: Advanced software and algorithms enhancing Nanometrics metrology fleet capabilities fab-wide July 13th, 2017

Nanometrics Releases NanoDiffract 4: Latest software extends process control capabilities for advanced 3D devices July 11th, 2017

Learning with light: New system allows optical “deep learning”: Neural networks could be implemented more quickly using new photonic technology June 12th, 2017

Announcements

Ultrathin device harvests electricity from human motion July 23rd, 2017

The July 23 close fly-by of asteroid 2017 BS5 is explored in a Q&A with Dr. John S. Lewis, chief scientist at Deep Space Industries July 23rd, 2017

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Pulses of electrons manipulate nanomagnets and store information: Scientists use electron pulses to create and manipulate nanoscale magnetic excitations that can store data July 21st, 2017

Tools

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Coupling a nano-trumpet with a quantum dot enables precise position determination July 14th, 2017

Nanometrics to Announce Second Quarter Financial Results on August 1, 2017 July 14th, 2017

Nanometrics Introduces SpectraProbe Analysis Software: Advanced software and algorithms enhancing Nanometrics metrology fleet capabilities fab-wide July 13th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project