Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > A New Particle Has Been Discovered – Chances Are, It Is the Higgs Boson

Illustration of a particle collision
Illustration of a particle collision

Abstract:
The long and complicated journey to detect the Higgs boson, which started with one small step about 25 years ago, might finally have reached its goal. This was reported by LHC particle accelerator scientists today at the European Laboratory for Particle Physics, CERN, near Geneva.

A New Particle Has Been Discovered – Chances Are, It Is the Higgs Boson

Rehovot, Israel | Posted on July 4th, 2012

The Higgs boson is the final building block that has been missing from the "Standard Model," which describes the structure of matter in the universe. The Higgs boson combines two forces of nature and shows that they are, in fact, different aspects of a more fundamental force. The particle is also responsible for the existence of mass in the elementary particles.

Weizmann Institute scientists have been prominent participants in this research from its onset. Prof. Giora Mikenberg was for many years head of the research group that searched for the Higgs boson in CERN's OPAL experiment. He was then leader of the ATLAS Muon Project - one of the two experiments that eventually revealed the particle. Prof. Ehud Duchovni heads the Weizmann Institute team that examines other key questions at CERN. Prof. Eilam Gross is currently the ATLAS Higgs physics group convener. In the Weizmann team three scientific "generations" are represented: Mikenberg was Duchovni's supervisor, who was, in turn, Gross's supervisor.

Gross: "This is the biggest day of my life. I have been searching for the Higgs since I was a student in the 1980's. Even after 25 years, it still came as a surprise. No matter what you call it - we are no longer searching for the Higgs but measuring its properties. Though I believed it would be found, I never dreamed it would happen while I was holding a senior position in the global research team."

Most of us experience the world as a diverse and complex place. But the physicists among us are not content with visible reality. They are striving to get to the bottom of that reality and to see whether it is, as they think, based on the absolute simplicity displayed by the early universe. They expect to observe a range of particles that are different "ensembles" of a handful of elementary particles. The scientists are hoping to see a unification of the four fundamental forces of nature that act on these particles (the weak force responsible for radioactivity, electromagnetic force, the strong force responsible for the existence of protons and neutrons, and gravitation).

The first step in the journey to unify the forces was completed with the almost certain discovery of the Higgs particle: The union of two elementary forces - the electromagnetic and weak force, to become the electroweak force.

One aspect of the Higgs boson, named after the Scottish physicist Peter Higgs, manifests itself in the giving of mass to the weak force carriers - the "W" and "Z" particles. (The electromagnetic force carrier, the photon, remains massless.)

The Largest Machine in the World

In the effort to discover the Higgs boson, unify the fundamental forces and understand the origin of mass in the universe, scientists built the world's largest machine: a particle accelerator nestled in a 27-km-long circular tunnel, 100 meters beneath the border between France and Switzerland, in the European particle physics laboratory, CERN, near Geneva.

This accelerator, called LHC (Large Hadron Collider), accelerates beams of protons up to 99.999998% the speed of light. According to the theory of relativity, this increases their mass by 7,500 times that of their normal resting mass. The accelerator aims the beams straight at each other, causing collisions that release so much energy, the protons themselves explode. For much less than the blink of an eye, conditions similar to those that existed in the universe in the first fraction of a second after the Big Bang are present in the accelerator.

As a result, particles of matter are turned into energy, in accordance with Albert Einstein's famous equation describing the conversion of matter into energy: E=mc2. The energy then propagates through space and the system cools. (Something similar happened in the early evolution of the universe.) Consequently, energy turns back into particles of matter and the process is repeated until particles that can exist in reality as we know it are formed.

The collisions produce energetic particles, some of which exist for extremely short periods of time. The only way to discern their existence is to identify the footprints they leave behind. For this purpose, a variety of particle detectors were developed, each optimized for capturing particular types of particles.

Statistics

The likelihood of creating the Higgs boson in a single collision is similar to that of randomly extracting a specific living cell from the leaf of a plant, out of all the plants growing on Earth. To cope with this task, Weizmann Institute scientists, headed by Prof. Mikenberg, developed unique particle detectors, which were manufactured at the Institute, and in Japan and China. These detectors have been adapted to detect muon particles. In some of the very rare collisions that produce Higgs particles, the footprint of the Higgs particle - that which is recorded in the detectors - is four energetic muons. Thus, the detection of such muons provides circumstantial evidence for the existence of the Higgs particle.

The scientists analyzed data from a thousand trillion proton collisions; in these Higgs bosons are created along with many other similar particles. Evidence to suggest the existence of the Higgs arises through searches for anomalies in the collected data (in comparison with the expected data if such a particle does not exist). This search focuses on the estimated mass of the particle: 126 trillion electron volts (Gev). When the scientists do manage to find such anomalies, they must then rule out the possibility that it is due to statistical fluctuation.

The calculations carried out by scientists in recent weeks, in which Prof. Gross played a central role, have revealed, with a high degree of statistical significance, a new particle with a mass similar to the expected mass of the Higgs. The wording is purposely cautious, leaving room for the possibility that a new particle other than the Higgs can be found within this mass range. The probability that this is, indeed, a new particle, is quite low. (But if it were, in truth, a different particle, say some physicists, things will start to get "really interesting.")

CERN

CERN scientists invented and developed the computer language and basic concepts that later served as the basis for the establishment of the Internet. In fact, the first server of the "World Wide Web" was activated in CERN to facilitate communication between scientists from around the globe participating in experiments carried out locally. The organization also served as a model for the establishment of the European Union, and its influence on Europe's technology and economy is reminiscent of the American space program.

The LHC particle accelerator is based on superconducting electromagnets working at very low temperatures: less than two degrees above absolute zero (minus 271° Celsius). It generates about one billion particle collisions per second: If they were people, it would be as if each person on the planet meets every one of the six billion inhabitants of the world every six seconds. Calculating and analyzing data from these collisions is like trying to understand what all the inhabitants of the world are saying, while each is holding 20 telephone conversations at once.

This experimental system includes the world's largest superconducting electromagnets, built in conjunction with Israeli companies. The entire structure includes 10,000 radiation detectors spaced just one millimeter apart, has a volume of 25,000 cubic meters and features half a million electronic channels. Most of the muon radiation detectors were built from components produced in Israel. A unique laser system tracks the exact location of the detectors with an accuracy of 25 microns (half the thickness of a human hair).

Prof. Ehud Duchovni's research is supported by the Friends of Weizmann Institute in memory of Richard Kronstein; the Nella and Leon Benoziyo Center for High Energy Physics; and the Yeda-Sela Center for Basic Research.

Prof. Duchovni is the incumbent of the Professor Wolfgang Gentner Professorial Chair of Nuclear Physics.

Prof. Eilam Gross's research is supported by the Friends of Weizmann Institute in memory of Richard Kronstein.

Prof. Giora Mikenberg's research is supported by the Nella and Leon Benoziyo Center for High Energy Physics, which he heads.

Prof. Mikenberg is the incumbent of the Lady Davis Professorial Chair of Experimental Physics

####

For more information, please click here

Contacts:
Batya Greenman
Publications and Media Relations Department
Weizmann Institute of Science
P.O. Box 26, Rehovot 76100
Israel
T: +972 (0)8 934 3852
F: +972 (0)8 934 4132
E:

Copyright © Weizmann Institute of Science

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

The International Space Elevator Consortium (ISEC) is proud to announce the 2014 Space Elevator Conference! This annual event will be held at the Museum of Flight in Seattle, Washington from Friday, August 22nd through Sunday, August 24th August 19th, 2014

KaSAM-2014 International Conference (September 7-10, 2014, Kathmandu, Nepal) August 19th, 2014

Success in Intracellular Imaging of Cesium Distribution in Plants Used for Cesium Absorption August 19th, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Physics

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

Moore quantum materials: Recipe for serendipity - Moore Foundation grant will allow Rice physicist to explore quantum materials August 12th, 2014

Harry Atwater and Albert Polman receive the Julius Springer Prize for Applied Physics 2014: Scientists honored for their pioneering achievements in plasmonics and nanophotonics August 8th, 2014

Diamond defect interior design: Planting imperfections called 'NV centers' at specific spots within a diamond lattice could advance quantum computing and atomic-scale measurement August 5th, 2014

Watching Schrödinger's cat die (or come to life): Steering quantum evolution & using probes to conduct continuous error correction in quantum computers July 30th, 2014

Videos/Movies

“Active” surfaces control what’s on them: Researchers develop treated surfaces that can actively control how fluids or particles move August 6th, 2014

New Method Provides Nanoscale Details of Electrochemical Reactions in Electric Vehicle Battery Materials August 4th, 2014

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Superconductivity

Study finds physical link to strange electronic behavior: Neutron measurements offer new clues about iron-based superconductor July 31st, 2014

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

Discoveries

Success in Intracellular Imaging of Cesium Distribution in Plants Used for Cesium Absorption August 19th, 2014

Сalculations with Nanoscale Smart Particles August 19th, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Graphene rubber bands could stretch limits of current healthcare, new research finds August 19th, 2014

Announcements

Сalculations with Nanoscale Smart Particles August 19th, 2014

Life on Mars? Implications of a newly discovered mineral-rich structure August 19th, 2014

Harris & Harris Group Letter to Shareholders on Website August 19th, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Research partnerships

Сalculations with Nanoscale Smart Particles August 19th, 2014

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

Nano Bonds Increase Raw Strength of Fireproof Concretes August 18th, 2014

Production of Toxic Ion Nanosorbents with High Sorption Capacity in Iran August 17th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE