Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Pitt researchers propose new spin on old method to develop more efficient electronics: Pitt nanoscientists suggest the use of vacuums to overcome the limits of conventional silicon-based semiconductor electronics

Abstract:
With the advent of semiconductor transistors—invented in 1947 as a replacement for bulky and inefficient vacuum tubes—has come the consistent demand for faster, more energy-efficient technologies. To fill this need, researchers at the University of Pittsburgh are proposing a new spin on an old method: a switch from the use of silicon electronics back to vacuums as a medium for electron transport—exhibiting a significant paradigm shift in electronics. Their findings were published online in Nature Nanotechnology July 1.

Pitt researchers propose new spin on old method to develop more efficient electronics: Pitt nanoscientists suggest the use of vacuums to overcome the limits of conventional silicon-based semiconductor electronics

Pittsburgh, PA | Posted on July 1st, 2012

For the past 40 years, the number of transistors placed on integrated circuit boards in devices like computers and smartphones has doubled every two years, producing faster and more efficient machines. This doubling effect, commonly known as "Moore's Law," occurred by scientists' ability to continually shrink the transistor size, thus producing computer chips with all-around better performance. However, as transistor sizes have approached lower nanometer scales, it's become increasingly difficult and expensive to extend Moore's Law further.

"Physical barriers are blocking scientists from achieving more efficient electronics," said Hong Koo Kim, principal investigator on the project and Bell of Pennsylvania/Bell Atlantic Professor in the University of Pittsburgh's Swanson School of Engineering. "We worked toward solving that road block by investigating transistors and its predecessor—the vacuum."

The ultimate limit of transistor speed, says Kim, is determined by the "electron transit time," or the time it takes an electron to travel from one device to the other. Electrons traveling inside a semiconductor device frequently experience collisions or scattering in the solid-state medium. Kim likens this to driving a vehicle on a bumpy road—cars cannot speed up very much. Likewise, the electron energy needed to produce faster electronics is hindered.

"The best way to avoid this scattering—or traffic jam—would be to use no medium at all, like vacuum or the air in a nanometer scale space," said Kim. "Think of it as an airplane in the sky creating an unobstructed journey to its destination."

However, says Kim, conventional vacuum electronic devices require high voltage, and they aren't compatible with many applications. Therefore, his team decided to redesign the structure of the vacuum electronic device altogether. With the assistance of Siwapon Srisonphan, a Pitt PhD candidate, and Yun Suk Jung, a Pitt postdoctoral fellow in electrical and computer engineering, Kim and his team discovered that electrons trapped inside a semiconductor at the interface with an oxide or metal layer can be easily extracted out into the air. The electrons harbored at the interface form a sheet of charges, called two-dimensional electron gas. Kim found that the Coulombic repulsion—the interaction between electrically charged particles—in the electron layer enables the easy emission of electrons out of silicon. The team extracted electrons from the silicon structure efficiently by applying a negligible amount of voltage and then placed them in the air, allowing them to travel ballistically in a nanometer-scale channel without any collisions or scattering.

"The emission of this electron system into vacuum channels could enable a new class of low-power, high-speed transistors, and it's also compatible with current silicon electronics, complementing those electronics by adding new functions that are faster and more energy efficient due to the low voltage," said Kim.

With this finding, he says, there is the potential for the vacuum transistor concept to come back, but in a fundamentally different and improved way.

Funding for this research was provided by the National Science Foundation.

####

For more information, please click here

Contacts:
B. Rose Huber

412-624-4356

Copyright © University of Pittsburgh

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Chemistry

How does enzymatic pretreatment affect the nanostructure and reaction space of lignocellulosic biomass? December 18th, 2014

The gold standard December 9th, 2014

Simple, Biocompatible Method Developed for Production of Cerium Oxide Nanoparticles December 9th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Nanoelectronics

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

Defects are perfect in laser-induced graphene: Rice University lab discovers simple way to make material for energy storage, electronics December 10th, 2014

Nanoscale resistors for quantum devices: The electrical characteristics of new thin-film chromium oxide resistors that can be tuned by controlling the oxygen content detailed in the 'Journal of Applied Physics' December 9th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Discoveries

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Announcements

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE