Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Pitt researchers propose new spin on old method to develop more efficient electronics: Pitt nanoscientists suggest the use of vacuums to overcome the limits of conventional silicon-based semiconductor electronics

Abstract:
With the advent of semiconductor transistors—invented in 1947 as a replacement for bulky and inefficient vacuum tubes—has come the consistent demand for faster, more energy-efficient technologies. To fill this need, researchers at the University of Pittsburgh are proposing a new spin on an old method: a switch from the use of silicon electronics back to vacuums as a medium for electron transport—exhibiting a significant paradigm shift in electronics. Their findings were published online in Nature Nanotechnology July 1.

Pitt researchers propose new spin on old method to develop more efficient electronics: Pitt nanoscientists suggest the use of vacuums to overcome the limits of conventional silicon-based semiconductor electronics

Pittsburgh, PA | Posted on July 1st, 2012

For the past 40 years, the number of transistors placed on integrated circuit boards in devices like computers and smartphones has doubled every two years, producing faster and more efficient machines. This doubling effect, commonly known as "Moore's Law," occurred by scientists' ability to continually shrink the transistor size, thus producing computer chips with all-around better performance. However, as transistor sizes have approached lower nanometer scales, it's become increasingly difficult and expensive to extend Moore's Law further.

"Physical barriers are blocking scientists from achieving more efficient electronics," said Hong Koo Kim, principal investigator on the project and Bell of Pennsylvania/Bell Atlantic Professor in the University of Pittsburgh's Swanson School of Engineering. "We worked toward solving that road block by investigating transistors and its predecessor—the vacuum."

The ultimate limit of transistor speed, says Kim, is determined by the "electron transit time," or the time it takes an electron to travel from one device to the other. Electrons traveling inside a semiconductor device frequently experience collisions or scattering in the solid-state medium. Kim likens this to driving a vehicle on a bumpy road—cars cannot speed up very much. Likewise, the electron energy needed to produce faster electronics is hindered.

"The best way to avoid this scattering—or traffic jam—would be to use no medium at all, like vacuum or the air in a nanometer scale space," said Kim. "Think of it as an airplane in the sky creating an unobstructed journey to its destination."

However, says Kim, conventional vacuum electronic devices require high voltage, and they aren't compatible with many applications. Therefore, his team decided to redesign the structure of the vacuum electronic device altogether. With the assistance of Siwapon Srisonphan, a Pitt PhD candidate, and Yun Suk Jung, a Pitt postdoctoral fellow in electrical and computer engineering, Kim and his team discovered that electrons trapped inside a semiconductor at the interface with an oxide or metal layer can be easily extracted out into the air. The electrons harbored at the interface form a sheet of charges, called two-dimensional electron gas. Kim found that the Coulombic repulsion—the interaction between electrically charged particles—in the electron layer enables the easy emission of electrons out of silicon. The team extracted electrons from the silicon structure efficiently by applying a negligible amount of voltage and then placed them in the air, allowing them to travel ballistically in a nanometer-scale channel without any collisions or scattering.

"The emission of this electron system into vacuum channels could enable a new class of low-power, high-speed transistors, and it's also compatible with current silicon electronics, complementing those electronics by adding new functions that are faster and more energy efficient due to the low voltage," said Kim.

With this finding, he says, there is the potential for the vacuum transistor concept to come back, but in a fundamentally different and improved way.

Funding for this research was provided by the National Science Foundation.

####

For more information, please click here

Contacts:
B. Rose Huber

412-624-4356

Copyright © University of Pittsburgh

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Getting electrons to move in a semiconductor: Gallium oxide shows high electron mobility, making it promising for better and cheaper devices April 24th, 2018

JPK reports on research of the Mestroni Lab at the University of Colorado Denver which use the JPK NanoWizard® AFM to help in the characterization of cardiomyopathies April 24th, 2018

Organic solar cells reach record efficiency, benchmark for commercialization April 23rd, 2018

Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018

Chemistry

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Phononic SEIRA -- enhancing light-molecule interactions via crystal lattice vibrations April 10th, 2018

Design approach developed for important new catalysts for energy conversion and storage: New method could aid in design of pharmaceuticals and optical and data storage materials March 21st, 2018

New 4-D printer could reshape the world we live in March 20th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Organic solar cells reach record efficiency, benchmark for commercialization April 23rd, 2018

Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Quantum shift shows itself in coupled light and matter: Rice University scientists corral, quantify subtle movement in condensed matter system April 16th, 2018

Nanoelectronics

Getting electrons to move in a semiconductor: Gallium oxide shows high electron mobility, making it promising for better and cheaper devices April 24th, 2018

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Non-toxic filamentous virus helps quickly dissipate heat generated by electronic devices April 4th, 2018

Ancient paper art, kirigami, poised to improve smart clothing: New research shows how paper-cutting can make ultra strong, stretchable electronics April 3rd, 2018

Discoveries

Getting electrons to move in a semiconductor: Gallium oxide shows high electron mobility, making it promising for better and cheaper devices April 24th, 2018

JPK reports on research of the Mestroni Lab at the University of Colorado Denver which use the JPK NanoWizard® AFM to help in the characterization of cardiomyopathies April 24th, 2018

Organic solar cells reach record efficiency, benchmark for commercialization April 23rd, 2018

Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018

Announcements

Getting electrons to move in a semiconductor: Gallium oxide shows high electron mobility, making it promising for better and cheaper devices April 24th, 2018

JPK reports on research of the Mestroni Lab at the University of Colorado Denver which use the JPK NanoWizard® AFM to help in the characterization of cardiomyopathies April 24th, 2018

Organic solar cells reach record efficiency, benchmark for commercialization April 23rd, 2018

Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project