Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Skin contact breast tumor detection: Safer, cheaper detection using microwaves spots tumors sooner

Abstract:
A simple and cost effective imaging device for breast tumor detection based on a flexible and wearable antenna system has been developed by researchers at the Indiana University - Purdue University Indianapolis. The team based in the Integrated Nanosystems Development Institute (INDI) describes details in a forthcoming issue of the International Journal of Computer Aided Engineering and Technology and point out that their system holds the promise of much earlier detection than mammography.

Skin contact breast tumor detection: Safer, cheaper detection using microwaves spots tumors sooner

Geneva, Switzerland | Posted on June 29th, 2012

INDI's Kody Varahramyan and colleagues, Sudhir Shrestha, Mangilal Agarwal, Azadeh Hemati and Parvin Ghane explain that their system uses a planar microstrip antenna design on a flexible substrate that is optimized for operation in direct contact with the skin. The system avoids the 20% microwave signal loss observed with other systems based on matched coupling medium. Their tests with breast and tumor "phantoms" - model human body systems - shows that the received signal from a tumor is three times the strength from healthy tissue and is well defined relative to background noise level in the image.

The overall goal of the research is to develop a wearable, brassiere-like imaging system that uses non-ionizing radiation to detect cancerous breast tissue. The researchers suggest that the system is cost effective and could detect breast cancer earlier than other systems, although they add that it would be a complementary system to mammography rather than a replacement for it. Nevertheless for early detection with minimal discomfort to the patients, such a system could become a useful adjunct for cancer detection.

"It has been well recognized that the early detection of breast cancer by regular breast screening increases the survival rate among the breast cancer patients," the team says. Unfortunately, conventional mammography, which utilizes ionizing radiation, has a relatively high rate of false positives and false negatives as well as being uncomfortable. As such, the results for early breast tumors are often obscured by dense breast tissue and ambiguities present near the chest wall, which commonly leads to unnecessary biopsies.

The team is currently working on the software that will allow them to convert the microwave signals from the system into two-dimensional and three-dimensional images of breast tumors.

"Breast tumor detection by flexible wearable antenna system" in Int. J. Computer Aided Engineering and Technology, 2012, 4, 499-516

####

For more information, please click here

Contacts:
Kody Varahramyan

Copyright © Inderscience Publishers

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Ultrasensitive sensor using N-doped graphene July 26th, 2016

The NanoWizard® AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins July 26th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

XEI Scientific Partners with Electron Microscopy Sciences to Promote and Sell its Products in North and South America July 25th, 2016

Nanomedicine

The NanoWizard® AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins July 26th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

New remote-controlled microrobots for medical operations July 23rd, 2016

New superconducting coil improves MRI performance: UH-led research offers higher resolution, shorter scan time July 23rd, 2016

Discoveries

Ultrasensitive sensor using N-doped graphene July 26th, 2016

The NanoWizard® AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins July 26th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

Announcements

Ultrasensitive sensor using N-doped graphene July 26th, 2016

The NanoWizard® AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins July 26th, 2016

Designing climate-friendly concrete, from the nanoscale up: New understanding of concrete’s properties could increase lifetime of the building material, decrease emissions July 25th, 2016

XEI Scientific Partners with Electron Microscopy Sciences to Promote and Sell its Products in North and South America July 25th, 2016

Tools

The NanoWizard® AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins July 26th, 2016

Attosecond physics: Mapping electromagnetic waveforms July 25th, 2016

XEI Scientific Partners with Electron Microscopy Sciences to Promote and Sell its Products in North and South America July 25th, 2016

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic