Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > 'Tuning' Graphene Drums Might Turn Conductors to Semiconductors

NIST researchers showed that straining graphene membrane creates pseudomagnetic fields that confines the graphene's electrons and creates quantized quantum dot-like energy levels. The background is a false color image of the graphene drumheads made from a single layer of graphene over 1 micron-sized pits etched in a silicon dioxide substrate.
Credit: N. Klimov and T. Li, NIST/UMD
NIST researchers showed that straining graphene membrane creates pseudomagnetic fields that confines the graphene's electrons and creates quantized quantum dot-like energy levels. The background is a false color image of the graphene drumheads made from a single layer of graphene over 1 micron-sized pits etched in a silicon dioxide substrate.

Credit: N. Klimov and T. Li, NIST/UMD

Abstract:
Tightening or relaxing the tension on a drumhead will change the way the drum sounds. The same goes for drumheads made from graphene, only instead of changing the sound, stretching graphene dramatically alters the material's electrical properties. Researchers working at the National Institute of Standards and Technology (NIST) and the University of Maryland have shown* that subjecting graphene to mechanical strain can mimic the effects of magnetic fields and create a quantum dot, an exotic type of semiconductor with a wide range of potential uses in electronic devices.

'Tuning' Graphene Drums Might Turn Conductors to Semiconductors

Gaithersburg, MD | Posted on June 28th, 2012

Graphene is a single layer of carbon atoms arranged in a honeycomb lattice. Pure graphene is a phenomenal conductor, transmitting electricity with little resistance at room temperature. But microelectronic devices depend on semiconductors that can be turned "on" and "off" because they have an energetic threshold beneath which they won't conduct electricity. This new work demonstrates that mechanical strain can be used to make tiny regions of graphite act like a classic semiconductor.

The research team suspended a sheet of graphene over shallow holes in a substrate of silicon dioxide—essentially making a set of graphene drumheads. In probing the drumheads with a scanning probe microscope, they found that the graphene rose up to meet the tip of the microscope— a result of the van der Waals force, a weak electrical force that creates attraction between objects that are very close to each other. Calculations by the University of Maryland group showed that the graphene should stretch into a peak, like the top of a circus tent.

The researchers discovered that they could tune the strain in the drumhead using the conducting plate upon which the graphene and substrate were mounted to create a countervailing attraction and pull the drumhead down. In this way, they could pull the graphene into or out of the hole below it.

Their measurements showed that changing the degree of strain changed the material's electrical properties. When they pulled the graphene membrane into the tent-like shape, the region at the apex acted just like a quantum dot, a type of semiconductor in which electrons are confined to a small region of space.

"Normally, to make a graphene quantum dot, you would have to cut out a nanosize piece of graphene," says NIST fellow Joseph Stroscio. "Our work shows that you can achieve the same thing with strain-induced pseudomagnetic fields. It's a great result, and a significant step toward developing future graphene-based devices."

More details are available in the June 21 NIST news announcement, "Graphene Drumheads Tuned to Make Quantum Dots" at www.nist.gov/cnst/drumheads_062112.cfm.

The work was a collaborative effort with the University of Maryland, College Park, and the Korea Research Institute of Standards and Science.

* N. Klimov, S. Jung, S. Zhu, T. Li, C. Wright, S. Solares, D. Newell, N. Zhitenev and J. Stroscio. Electromechanical properties of graphene drumheads. Science. Vol. 336 no. 6088 pp. 1557-1561 DOI: 10.1126/science.1220335. Published online before print June 21, 2012.

####

About National Institute of Standards and Technology (NIST)
The National Institute of Standards and Technology (NIST) is an agency of the U.S. Department of Commerce.

For more information, please click here

Contacts:
Mark Esser
301-975-8735

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers find new way to control light with electric fields May 25th, 2017

Nanometrics Announces Retirement Plans of CEO Timothy Stultz: Dr. Stultz to Continue as Director May 25th, 2017

Nanomechanics, Inc. to Exhibit at the SEM Conference: Nanoindentation experts will attend and exhibit their instruments at the Conference and Exposition on Experimental and Applied Mechanics in Indianapolis May 25th, 2017

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Leti to Demo 1st Wireless UNB Transceiver for ‘Massive Internet of Things’ at RFIC 2017 and IMS 2017: Leti Will also Present Three Papers & Two Workshops on 5G Communications IC Design, from RF to mm-Wave, During IMS 2017 and RFIC 2017 in Hawaii May 24th, 2017

Graphene/ Graphite

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Laboratories

NREL’s Advanced Atomic Layer Deposition Enables Lithium-Ion Battery Technology: May 10th, 2017

Discovery of new transparent thin film material could improve electronics and solar cells: Conductivity is highest-ever for thin film oxide semiconductor material May 6th, 2017

Sandia develops math techniques to improve computational efficiency in quantum chemistry May 5th, 2017

Scientists Set Record Resolution for Drawing at the One-Nanometer Length Scale: An electron microscope-based lithography system for patterning materials at sizes as small as a single nanometer could be used to create and study materials with new properties May 1st, 2017

Govt.-Legislation/Regulation/Funding/Policy

Researchers find new way to control light with electric fields May 25th, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Chip Technology

Researchers find new way to control light with electric fields May 25th, 2017

Nanometrics Announces Retirement Plans of CEO Timothy Stultz: Dr. Stultz to Continue as Director May 25th, 2017

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Plasmon-powered upconversion nanocrystals for enhanced bioimaging and polarized emission: Plasmonic gold nanorods brighten lanthanide-doped upconversion superdots for improved multiphoton bioimaging contrast and enable polarization-selective nonlinear emissions for novel nanoscal May 19th, 2017

Discoveries

Researchers find new way to control light with electric fields May 25th, 2017

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Announcements

Researchers find new way to control light with electric fields May 25th, 2017

Nanometrics Announces Retirement Plans of CEO Timothy Stultz: Dr. Stultz to Continue as Director May 25th, 2017

Nanomechanics, Inc. to Exhibit at the SEM Conference: Nanoindentation experts will attend and exhibit their instruments at the Conference and Exposition on Experimental and Applied Mechanics in Indianapolis May 25th, 2017

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Quantum Dots/Rods

The brighter side of twisted polymers: Conjugated polymers designed with a twist produce tiny, brightly fluorescent particles with broad applications May 16th, 2017

Nanoparticles open new window for biological imaging: “Quantum dots” that emit infrared light enable highly detailed images of internal body structures April 10th, 2017

Particle Works creates range of high performance quantum dots February 23rd, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Research partnerships

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project