Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Not-so-precious: Stripping gold from AFM probes allows better measurement of picoscale forces

This is an artist's conception of JILA's advance in atomic force microscope (AFM) design. To measure picoscale forces in liquid, a AFM probe attaches to a molecule such as DNA and pulls, and the deflection of the probe is measured. JILA researchers found that probes with the gold coating removed (purple in the illustration) make measurements that are 10 times more stable and precise than those made with conventional gold-coated probes. Gold helps reflect the laser light but it can also potentially crack, age, and creep, which degrades its mechanical properties and reduces measurement precision.

Credit: Baxley/JILA
This is an artist's conception of JILA's advance in atomic force microscope (AFM) design. To measure picoscale forces in liquid, a AFM probe attaches to a molecule such as DNA and pulls, and the deflection of the probe is measured. JILA researchers found that probes with the gold coating removed (purple in the illustration) make measurements that are 10 times more stable and precise than those made with conventional gold-coated probes. Gold helps reflect the laser light but it can also potentially crack, age, and creep, which degrades its mechanical properties and reduces measurement precision.

Credit: Baxley/JILA

Abstract:
Gold is not necessarily precious—at least not as a coating on atomic force microscope (AFM) probes.

JILA researchers found that removing an AFM probe's gold coating—until now considered helpful—greatly improved force measurements performed in a liquid, the medium favored for biophysical studies such as stretching DNA or unfolding proteins. As described in Nano Letters,* stripping the gold from the diving-board-shaped probe, or cantilever, with a brief chemical bath improved the precision and stability of force measurements about 10-fold. The advance is expected to quickly and broadly benefit the fields of biophysics and nanoscience.

Not-so-precious: Stripping gold from AFM probes allows better measurement of picoscale forces

Boulder, CO | Posted on June 28th, 2012

JILA is a joint institute of the National Institute of Standards and Technology (NIST) and the University of Colorado Boulder.

"What I find interesting about this experiment is it's so incredibly simple. It takes a minute to strip the gold off a commercial cantilever and you get a 10-fold improvement in force precision," says NIST/JILA physicist Thomas Perkins.

To measure forces at the molecular scale, an AFM's cantilever attaches to a molecule with its pointed end and pulls; the resulting deflection of the cantilever is measured. The forces are in the realm of piconewtons (pN), or trillionths of a newton. A unit of force, one newton is roughly the weight of a small apple.

Cantilevers are typically made of silicon or silicon nitride and coated with gold on both sides to reflect light. Perkins discovered the gold coating was a problem while his research group was probing the folding and unfolding of protein molecules over time periods of seconds to minutes. The group previously improved AFM position stability** and holds a related patent,*** but then discovered that the force was drifting. "It's counterintuitive," says Perkins. "Everyone has assumed you needed gold for the enhanced reflectivity, when in fact, gold is clearly the dominant source of force drift on short and long time scales."

"Gold exhibits a sort of complex elastic property in high-precision measurements," Perkins explains. "When you bend gold, it creeps a little bit, like silly putty. Further, the lore in the field is that gold can crack, it can age, and molecules can bind to it—all of which may change its mechanical properties. This problem is even worse when you do biological experiments in liquid."

AFM force measurements in liquid typically have had precision (error range) of plus or minus 5 to 10 pN. By stripping the gold JILA researchers reduced the error by 10 times, to about 0.5 pN for measurements on both short and long timescales. Researchers can now precisely measure fast processes, such as proteins folding and unfolding 50 times per second, over long time periods of several minutes. Significantly, the results were achieved with commercially available microscopes and cantilevers, so the practical benefits can be applied quickly for any AFM force measurements and imaging. AFM can now compete with optical traps and magnetic tweezers in terms of sensitivity.

The research was supported by the National Science Foundation and NIST.

* A.B. Churnside, R.M.A. Sullan, D.M. Nguyen, S.O. Case, M.S. Bull, G.M. King and T.T. Perkins. Routine and timely sub-piconewton force stability and precision for biological applications of atomic force microscopy. Nano Letters. Published online June 13.

** See the Mar. 24, 2009, NIST Tech Beat article, "Making a Point: Picoscale Stability in a Room-Temperature AFM" at www.nist.gov/public_affairs/tech-beat/tb20090324.cfm#afm.

*** U.S. Patent 7,928,409, April 19, 2011, Real-time, active picometer-scale alignment, stabilization and registration in one or more dimensions, T.T. Perkins, G.M. King and A.R. Carter.

####

For more information, please click here

Contacts:
Laura Ost

303-497-4880

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Imaging

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Cambridge Nanotherm partners with Inabata for global sales and distribution June 20th, 2017

GLOBALFOUNDRIES Launches 7nm ASIC Platform for Data Center, Machine Learning, and 5G Networks FX-7TM offering leverages the company’s 7nm: FinFET process to deliver best in class IP and Solutions June 13th, 2017

The Zeiss Global Centre in the School of Engineering at the University of Portsmouth uses Deben µXCT stages to characterise the structural competence of biological structures June 13th, 2017

Laboratories

Alloying materials of different structures offers new tool for controlling properties June 19th, 2017

Development of low-dimensional nanomaterials could revolutionize future technologies June 15th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Announcements

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tools

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Oxford Instruments congratulates Lancaster University for inaugurating the IsoLab, built for studying quantum systems June 20th, 2017

Changing the color of laser light on the femtosecond time scale: How BiCoO3 achieves second harmonic generation June 14th, 2017

Leti Announces Two New Tools for Improving Transportation Comfort, Safety and Efficiency: Wearable Device Measures Stress Responses for Travelers, Pilots and Truck Drivers, While Smartphone App Provides Transit Agencies Broad Data on Transport Modes June 13th, 2017

Patents/IP/Tech Transfer/Licensing

Aculon Expands NanoProof® Product Line for Electronics Waterproofing Technology: With growing market opportunities Aculon Launches NanoProof® 8 with Push Through Connectivity™ and NanoProof® DAB a syringe application May 30th, 2017

NREL’s Advanced Atomic Layer Deposition Enables Lithium-Ion Battery Technology: May 10th, 2017

Forge Nano 2017: 1st Quarter Media Update April 20th, 2017

Making Batteries From Waste Glass Bottles: UCR researchers are turning glass bottles into high performance lithium-ion batteries for electric vehicles and personal electronics April 19th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project