Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Not-so-precious: Stripping gold from AFM probes allows better measurement of picoscale forces

This is an artist's conception of JILA's advance in atomic force microscope (AFM) design. To measure picoscale forces in liquid, a AFM probe attaches to a molecule such as DNA and pulls, and the deflection of the probe is measured. JILA researchers found that probes with the gold coating removed (purple in the illustration) make measurements that are 10 times more stable and precise than those made with conventional gold-coated probes. Gold helps reflect the laser light but it can also potentially crack, age, and creep, which degrades its mechanical properties and reduces measurement precision.

Credit: Baxley/JILA
This is an artist's conception of JILA's advance in atomic force microscope (AFM) design. To measure picoscale forces in liquid, a AFM probe attaches to a molecule such as DNA and pulls, and the deflection of the probe is measured. JILA researchers found that probes with the gold coating removed (purple in the illustration) make measurements that are 10 times more stable and precise than those made with conventional gold-coated probes. Gold helps reflect the laser light but it can also potentially crack, age, and creep, which degrades its mechanical properties and reduces measurement precision.

Credit: Baxley/JILA

Abstract:
Gold is not necessarily precious—at least not as a coating on atomic force microscope (AFM) probes.

JILA researchers found that removing an AFM probe's gold coating—until now considered helpful—greatly improved force measurements performed in a liquid, the medium favored for biophysical studies such as stretching DNA or unfolding proteins. As described in Nano Letters,* stripping the gold from the diving-board-shaped probe, or cantilever, with a brief chemical bath improved the precision and stability of force measurements about 10-fold. The advance is expected to quickly and broadly benefit the fields of biophysics and nanoscience.

Not-so-precious: Stripping gold from AFM probes allows better measurement of picoscale forces

Boulder, CO | Posted on June 28th, 2012

JILA is a joint institute of the National Institute of Standards and Technology (NIST) and the University of Colorado Boulder.

"What I find interesting about this experiment is it's so incredibly simple. It takes a minute to strip the gold off a commercial cantilever and you get a 10-fold improvement in force precision," says NIST/JILA physicist Thomas Perkins.

To measure forces at the molecular scale, an AFM's cantilever attaches to a molecule with its pointed end and pulls; the resulting deflection of the cantilever is measured. The forces are in the realm of piconewtons (pN), or trillionths of a newton. A unit of force, one newton is roughly the weight of a small apple.

Cantilevers are typically made of silicon or silicon nitride and coated with gold on both sides to reflect light. Perkins discovered the gold coating was a problem while his research group was probing the folding and unfolding of protein molecules over time periods of seconds to minutes. The group previously improved AFM position stability** and holds a related patent,*** but then discovered that the force was drifting. "It's counterintuitive," says Perkins. "Everyone has assumed you needed gold for the enhanced reflectivity, when in fact, gold is clearly the dominant source of force drift on short and long time scales."

"Gold exhibits a sort of complex elastic property in high-precision measurements," Perkins explains. "When you bend gold, it creeps a little bit, like silly putty. Further, the lore in the field is that gold can crack, it can age, and molecules can bind to it—all of which may change its mechanical properties. This problem is even worse when you do biological experiments in liquid."

AFM force measurements in liquid typically have had precision (error range) of plus or minus 5 to 10 pN. By stripping the gold JILA researchers reduced the error by 10 times, to about 0.5 pN for measurements on both short and long timescales. Researchers can now precisely measure fast processes, such as proteins folding and unfolding 50 times per second, over long time periods of several minutes. Significantly, the results were achieved with commercially available microscopes and cantilevers, so the practical benefits can be applied quickly for any AFM force measurements and imaging. AFM can now compete with optical traps and magnetic tweezers in terms of sensitivity.

The research was supported by the National Science Foundation and NIST.

* A.B. Churnside, R.M.A. Sullan, D.M. Nguyen, S.O. Case, M.S. Bull, G.M. King and T.T. Perkins. Routine and timely sub-piconewton force stability and precision for biological applications of atomic force microscopy. Nano Letters. Published online June 13.

** See the Mar. 24, 2009, NIST Tech Beat article, "Making a Point: Picoscale Stability in a Room-Temperature AFM" at www.nist.gov/public_affairs/tech-beat/tb20090324.cfm#afm.

*** U.S. Patent 7,928,409, April 19, 2011, Real-time, active picometer-scale alignment, stabilization and registration in one or more dimensions, T.T. Perkins, G.M. King and A.R. Carter.

####

For more information, please click here

Contacts:
Laura Ost

303-497-4880

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New, old science combine to make faster medical test: Nanoparticles and Faraday rotation allow faster diagnoses January 23rd, 2017

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Imaging

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Laboratories

Nanoscale view of energy storage January 16th, 2017

Chemistry on the edge: Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function January 13th, 2017

Recreating conditions inside stars with compact lasers: Scientists offer a new path to creating the extreme conditions found in stars, using ultra-short laser pulses irradiating nanowires January 12th, 2017

NIST physicists 'squeeze' light to cool microscopic drum below quantum limit January 12th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

Strength of hair inspires new materials for body armor January 18th, 2017

Announcements

New, old science combine to make faster medical test: Nanoparticles and Faraday rotation allow faster diagnoses January 23rd, 2017

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Tools

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 7, 2017 January 19th, 2017

Distinguishing truth under the surface: electrostatic or mechanic December 31st, 2016

Nanomechanics Inc. Continues Growth in Revenue and Market Penetration: Leading nanoindentation company reports continued growth in revenues and distribution channels on national and international scales December 27th, 2016

Patents/IP/Tech Transfer/Licensing

Keystone Nano Announces The US FDA Has Awarded Orphan Drug Designation For Ceramides For The Treatment Of Liver Cancer November 8th, 2016

Leti to Tackle Tomorrow's Research Strategies with Stanford University’s SystemX Alliance: French R&D Center Is the First Research Institute to Join the Collaboration and Provides Bridges Between Academia and Industry, Leveraging Alliance’s Potential October 4th, 2016

Picosun patents ALD nanolaminate to prevent electronics from overheating September 28th, 2016

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project