Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Assessing an object's consistency without touching it

© Richard Villey and Frédéric Restagno Close up of the Pyrex sphere and Pyrex plane on which the nanometric scale elastic film is deposited. The small drop of liquid that serves as a probe is visible.
© Richard Villey and Frédéric Restagno

Close up of the Pyrex sphere and Pyrex plane on which the nanometric scale elastic film is deposited. The small drop of liquid that serves as a probe is visible.

Abstract:
Two teams of researchers have succeeded in evaluating the rigidity of a material … without touching it! To achieve this feat, physicists from the Laboratoire de Physique de la Matière Condensée et des Nanostructures (CNRS / Université Claude Bernard Lyon 1) and the Laboratoire de Physique des Solides (Université Paris-Sud / CNRS) placed a liquid-where they created a very weak, nanometric scale flow-between the probed object and the "tester". This technique, derived from the latest advances in nano-mechanics, has the advantage of being non-invasive and therefore non-destructive and could significantly improve the testing and analysis of thin, fragile objects such as bubbles or cells. This work is published on-line on June 18, 2012 on the website of the journal Physical Review Letters.

Assessing an object's consistency without touching it

Paris, France | Posted on June 27th, 2012

A simple way of determining whether a body is hard or soft is to touch it with a harder object. The problem with this technique is that it can destroy the item, especially if it is extremely fragile like a bubble or a living cell. Developing a less invasive alternative was therefore vital. To assess the rigidity of an object without touching it, the team of physicists had envisaged blowing on it delicately to check whether this flow of air deformed the material or not. But precisely controlling a flow of air is difficult on account of the vortexes that can form in the air. Hence the idea of using an easier-to-control "nano-flow" of fluid instead.

The researchers tested their technique on a thin elastomer (rubber) film, only several hundreds of nanometers (1) thick. In concrete terms, they placed the film on a rigid glass support and immersed the lot in a mixture of water and glycerol. They then created a very slight displacement of the liquid, near to the film. To generate this nano-flow, the physicists, and more particularly Samuel Leroy who was then working on his PhD at LPMCN (2), had to use a special device, developed in 2000 in the same laboratory (3). It comprises in particular a millimetric Pyrex (special glass) sphere, attached to a rod, which can be finely moved with what is known as a "piezoelectric ceramic" system. It is precisely this tiny glass bead that allows a nano-flow to be created at the surface of an object.

When the sphere comes up very close to the material (0.000001 meters), it pushes the liquid towards the object. This nano-flow generates a very slight pressure on the surface of the material. This force deforms the film very slightly, if it is flexible. On the other hand, if the tested object is completely rigid, the film remains unchanged.

The two teams also discovered that their method can be used to measure the rigidity of an array of bubbles, an element so fragile that touching it would mean destroying it! It is the first time that the possibility of measuring the elastic properties of an object using a nano-flow of fluid has been demonstrated. This initial work opens the way to a new nanometric-scale imaging technique for observing the elastic properties of very thin or thicker objects.

Notes:
(1) 1 nm = 0.000000001 m
(2) Laboratoire de Physique de la Matière Condensée et des Nanostructures (CNRS / Université Claude Bernard Lyon 1)
(3) Apparatus developed during the PhD work of Frédéric Restagno, under the supervision of Elisabeth Charlaix, currently working at the Laboratoire Interdisciplinaire de Physique (CNRS / Université Grenoble 1)

####

Contacts:
Julien Guillaume
+ 33 1 44 96 51 51


CNRS researcher
Frédéric Restagno
T +33 (0)1 69 15 70 78


Elisabeth Charlaix
T +33 (0)4 76 51 49 63


CNRS press officer
Priscilla Dacher
T +33 (0)1 44 96 46 06 l

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Physics

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

Research partnerships

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project