Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Better surfaces could help dissipate heat: Heat transfer in everything from computer chips to powerplants could be improved through new analysis of surface textures

Time-lapse images of vapor bubble departure on the microstructured surfaces (a-d).
Image: Kuang-Han Chu et al, Applied Physics Letters
Time-lapse images of vapor bubble departure on the microstructured surfaces (a-d).

Image: Kuang-Han Chu et al, Applied Physics Letters

Abstract:
Cooling systems that use a liquid that changes phase such as water boiling on a surface can play an important part in many developing technologies, including advanced microchips and concentrated solar-power systems. But understanding exactly how such systems work, and what kinds of surfaces maximize the transfer of heat, has remained a challenging problem.

Better surfaces could help dissipate heat: Heat transfer in everything from computer chips to powerplants could be improved through new analysis of surface textures

Cambridge, MA | Posted on June 26th, 2012

Now, researchers at MIT have found that relatively simple, microscale roughening of a surface can dramatically enhance its transfer of heat. Such an approach could be far less complex and more durable than approaches that enhance heat transfer through smaller patterning in the nanometer (billionths of a meter) range. The new research also provides a theoretical framework for analyzing the behavior of such systems, pointing the way to even greater improvements.

The work was published this month in the journal Applied Physics Letters, in a paper co-authored by graduate student Kuang-Han Chu, postdoc Ryan Enright and Evelyn Wang, an associate professor of mechanical engineering.

"Heat dissipation is a major problem" in many fields, especially electronics, Wang says; the use of phase-change liquids such as boiling water to transfer heat away from a surface "has been an area of significant interest for many decades." But until now, there has not been a good understanding of parameters that determine how different materials and especially surface texturing might affect heat-transfer performance. "Because of the complexities of the phase-change process, it's only recently that we have an ability to manipulate" surfaces to optimize the process, Wang says, thanks to advances in micro- and nanotechnology.

Chu says a major potential application is in server farms, where the need to keep many processors cool contributes significantly to energy costs. While this research analyzed the use of water for cooling, he adds that the team "believe[s] this research is generalizable, no matter what the fluid."

The team concluded that the reason surface roughness greatly enhances heat transfer more than doubling the maximum heat dissipation is that it enhances capillary action at the surface, helping keep a line of vapor bubbles "pinned" to the heat transfer surface, delaying the formation of a vapor layer that greatly reduces cooling.

To test the process, the researchers made a series of postage-stamp-sized silicon wafers with varying degrees of surface roughness, including some perfectly smooth samples for comparison. The degree of roughness is measured as the portion of the surface area that can come into contact with a liquid, as compared to a completely smooth surface. (For example, if you crumpled a piece of paper and then flattened it back out so that it covered an area half as large as the original sheet, that would represent a roughness of 2.)

The researchers found that systematically increasing roughness led to a proportional increase in heat-dissipation capability, regardless of the dimensions of the surface-roughening features. The results showed that a simple roughening of the surface improved heat transfer as much as the best previous techniques studied, which used a much more complex process to produce nanoscale patterns on the surface.

In addition to the experimental work, the team developed an analytical model that very precisely matches the observed results. Researchers can now use that model to optimize surfaces for particular applications.

"There has been limited understanding of what kind of structures you need" for effective heat transfer, Wang says. This new research "serves as an important first step" toward such analysis.

It turns out heat-transfer is almost entirely a function of a surface's overall roughness, Wang says, and is based on the balance between various forces acting on the vapor bubbles that serve to dissipate heat: surface tension, momentum and buoyancy .

While the most immediate applications would likely be in high-performance electronic devices, and perhaps in concentrated solar-power systems, the same principles could apply to larger systems such as powerplant boilers, desalination plants or nuclear reactors, the researchers say.

Satish Kandlikar, a professor of mechanical engineering at the Rochester Institute of Technology who was not involved in this work, says it is "quite remarkable to achieve heat fluxes" as great as these "on silicon surfaces without complex micro- or nanofabrication process steps. This development opens doors to a new class of surface structures combining micro- and nanoscale features." He adds that the MIT team "should be complimented for this major research finding. It will provide new directions especially in chip-cooling applications."

The work was supported by the Battelle Memorial Institute and the Air Force Office of Scientific Research. The team received help in fabrication from the MIT Microsystems Technology Lab.

Written by: David Chandler, MIT News Office

####

For more information, please click here

Contacts:
Caroline McCall
Media Relations Assistant

phone: 617-253-1682

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible May 29th, 2017

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Physics

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Ultracold atom waves may shed light on rogue ocean killers: Rice quantum experiments probe underlying physics of rogue ocean waves April 27th, 2017

Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future April 25th, 2017

NIST physicists show ion pairs perform enhanced 'spooky action' March 30th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible May 29th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Chip Technology

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible May 29th, 2017

Researchers find new way to control light with electric fields May 25th, 2017

Nanometrics Announces Retirement Plans of CEO Timothy Stultz: Dr. Stultz to Continue as Director May 25th, 2017

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Discoveries

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible May 29th, 2017

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Announcements

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible May 29th, 2017

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Military

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Gas gives laser-induced graphene super properties: Rice University study shows inexpensive material can be superhydrophilic or superhydrophobic May 15th, 2017

'Hot' electrons don't mind the gap: Rice University scientists find nanogaps in plasmonic gold wires enhance voltage when excited May 8th, 2017

Energy

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Fed grant backs nanofiber development: Rice University joins Department of Energy 'Next Generation Machines' initiative May 10th, 2017

Discovery of new transparent thin film material could improve electronics and solar cells: Conductivity is highest-ever for thin film oxide semiconductor material May 6th, 2017

Solar/Photovoltaic

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Fed grant backs nanofiber development: Rice University joins Department of Energy 'Next Generation Machines' initiative May 10th, 2017

Discovery of new transparent thin film material could improve electronics and solar cells: Conductivity is highest-ever for thin film oxide semiconductor material May 6th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project