Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Better surfaces could help dissipate heat: Heat transfer in everything from computer chips to powerplants could be improved through new analysis of surface textures

Time-lapse images of vapor bubble departure on the microstructured surfaces (a-d).
Image: Kuang-Han Chu et al, Applied Physics Letters
Time-lapse images of vapor bubble departure on the microstructured surfaces (a-d).

Image: Kuang-Han Chu et al, Applied Physics Letters

Abstract:
Cooling systems that use a liquid that changes phase — such as water boiling on a surface — can play an important part in many developing technologies, including advanced microchips and concentrated solar-power systems. But understanding exactly how such systems work, and what kinds of surfaces maximize the transfer of heat, has remained a challenging problem.

Better surfaces could help dissipate heat: Heat transfer in everything from computer chips to powerplants could be improved through new analysis of surface textures

Cambridge, MA | Posted on June 26th, 2012

Now, researchers at MIT have found that relatively simple, microscale roughening of a surface can dramatically enhance its transfer of heat. Such an approach could be far less complex and more durable than approaches that enhance heat transfer through smaller patterning in the nanometer (billionths of a meter) range. The new research also provides a theoretical framework for analyzing the behavior of such systems, pointing the way to even greater improvements.

The work was published this month in the journal Applied Physics Letters, in a paper co-authored by graduate student Kuang-Han Chu, postdoc Ryan Enright and Evelyn Wang, an associate professor of mechanical engineering.

"Heat dissipation is a major problem" in many fields, especially electronics, Wang says; the use of phase-change liquids such as boiling water to transfer heat away from a surface "has been an area of significant interest for many decades." But until now, there has not been a good understanding of parameters that determine how different materials — and especially surface texturing — might affect heat-transfer performance. "Because of the complexities of the phase-change process, it's only recently that we have an ability to manipulate" surfaces to optimize the process, Wang says, thanks to advances in micro- and nanotechnology.

Chu says a major potential application is in server farms, where the need to keep many processors cool contributes significantly to energy costs. While this research analyzed the use of water for cooling, he adds that the team "believe[s] this research is generalizable, no matter what the fluid."

The team concluded that the reason surface roughness greatly enhances heat transfer — more than doubling the maximum heat dissipation — is that it enhances capillary action at the surface, helping keep a line of vapor bubbles "pinned" to the heat transfer surface, delaying the formation of a vapor layer that greatly reduces cooling.

To test the process, the researchers made a series of postage-stamp-sized silicon wafers with varying degrees of surface roughness, including some perfectly smooth samples for comparison. The degree of roughness is measured as the portion of the surface area that can come into contact with a liquid, as compared to a completely smooth surface. (For example, if you crumpled a piece of paper and then flattened it back out so that it covered an area half as large as the original sheet, that would represent a roughness of 2.)

The researchers found that systematically increasing roughness led to a proportional increase in heat-dissipation capability, regardless of the dimensions of the surface-roughening features. The results showed that a simple roughening of the surface improved heat transfer as much as the best previous techniques studied, which used a much more complex process to produce nanoscale patterns on the surface.

In addition to the experimental work, the team developed an analytical model that very precisely matches the observed results. Researchers can now use that model to optimize surfaces for particular applications.

"There has been limited understanding of what kind of structures you need" for effective heat transfer, Wang says. This new research "serves as an important first step" toward such analysis.

It turns out heat-transfer is almost entirely a function of a surface's overall roughness, Wang says, and is based on the balance between various forces acting on the vapor bubbles that serve to dissipate heat: surface tension, momentum and buoyancy .

While the most immediate applications would likely be in high-performance electronic devices, and perhaps in concentrated solar-power systems, the same principles could apply to larger systems such as powerplant boilers, desalination plants or nuclear reactors, the researchers say.

Satish Kandlikar, a professor of mechanical engineering at the Rochester Institute of Technology who was not involved in this work, says it is "quite remarkable to achieve heat fluxes" as great as these "on silicon surfaces without complex micro- or nanofabrication process steps. This development opens doors to a new class of surface structures combining micro- and nanoscale features." He adds that the MIT team "should be complimented for this major research finding. It will provide new directions especially in chip-cooling applications."

The work was supported by the Battelle Memorial Institute and the Air Force Office of Scientific Research. The team received help in fabrication from the MIT Microsystems Technology Lab.

Written by: David Chandler, MIT News Office

####

For more information, please click here

Contacts:
Caroline McCall
Media Relations Assistant

phone: 617-253-1682

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

No need in supercomputers: Russian scientists suggest a PC to solve complex problems tens of times faster than with massive supercomputers June 30th, 2016

Surprising qualities of insulator ring surfaces: Surface phenomena in ring-shaped topological insulators are just as controllable as those in spheres made of the same material June 30th, 2016

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

Oxford Instruments and Dresden High Magnetic Field Laboratory collaborate to develop HTS magnet technology components for high field superconducting magnet systems June 29th, 2016

Physics

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Particle zoo in a quantum computer: First experimental quantum simulation of particle physics phenomena June 23rd, 2016

Researchers refine method for detecting quantum entanglement June 18th, 2016

Govt.-Legislation/Regulation/Funding/Policy

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Particle zoo in a quantum computer: First experimental quantum simulation of particle physics phenomena June 23rd, 2016

Chip Technology

Surprising qualities of insulator ring surfaces: Surface phenomena in ring-shaped topological insulators are just as controllable as those in spheres made of the same material June 30th, 2016

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

Discoveries

No need in supercomputers: Russian scientists suggest a PC to solve complex problems tens of times faster than with massive supercomputers June 30th, 2016

Surprising qualities of insulator ring surfaces: Surface phenomena in ring-shaped topological insulators are just as controllable as those in spheres made of the same material June 30th, 2016

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

Announcements

No need in supercomputers: Russian scientists suggest a PC to solve complex problems tens of times faster than with massive supercomputers June 30th, 2016

Surprising qualities of insulator ring surfaces: Surface phenomena in ring-shaped topological insulators are just as controllable as those in spheres made of the same material June 30th, 2016

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

Oxford Instruments and Dresden High Magnetic Field Laboratory collaborate to develop HTS magnet technology components for high field superconducting magnet systems June 29th, 2016

Military

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Scientists engineer tunable DNA for electronics applications June 21st, 2016

Marrying superconductors, lasers, and Bose-Einstein condensates: Chapman University Institute for Quantum Studies (IQS) member Yutaka Shikano, Ph.D., recently had research published in Scientific Reports June 20th, 2016

Energy

Yale researchers’ technology turns wasted heat into power June 27th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

FEI and University of Liverpool Announce QEMSCAN Research Initiative: University of Liverpool will utilize FEI’s QEMSCAN technology to gain a better insight into oil and gas reserves & potentially change the approach to evaluating them June 22nd, 2016

Solar/Photovoltaic

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

New generation of high-efficiency solar thermal absorbers developed June 20th, 2016

Novel capping strategy improves stability of perovskite nanocrystals: Study addresses instability issues with organometal-halide perovskites, a promising class of materials for solar cells, LEDs, and other applications June 13th, 2016

Perovskite solar cells surpass 20 percent efficiency: EPFL researchers are pushing the limits of perovskite solar cell performance by exploring the best way to grow these crystals June 13th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic