Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Iranian Researchers Produce Ethanol Nanosensors

Abstract:
Iranian researchers from Tehran University and Shahid Rajayee Teachers Training University produced nanosensors to identify ethanol gas by synthesizing zinc oxide-tin oxide nanostructures.

Iranian Researchers Produce Ethanol Nanosensors

Tehran, Iran | Posted on June 25th, 2012

Zinc oxide-tin oxide nanostructure (ZnO-SnO2) has specific characteristics due to its vast conductivity change domain, and its sensitivity to the presence of gas. By identifying zinc oxide-tin oxide nanostructure and using nanotechnology, the researchers produced nanosensors that are sensitive to the presence of ethanol in environment and have high selectivity in regard with this gas.

The mentioned nanostructure had so far been produced through different and almost more difficult methods. Therefore and after carrying out studies on the synthesis of this nanostructure, the researchers succeeded in the production of ZnO-SnO2 nanostructure through the simpler method of deposition.

By carrying out experiments on the synthesized nanosensor, the researchers obtained desirable results. The results showed that by adding Zn2+ to the structure of SnO2, the SnO2's structure, morphology, and sensor behavior are improved. Therefore, the synthesized nanosensor has a higher sensitivity and selectivity to ethanol than to carbon monoxide and methanol in the environment.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Find the Lady' in the quantum world: International team of researchers presents method for quantum-mechanical swapping of positions October 18th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Chemistry

What can be discovered at the junction of physics and chemistry October 6th, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Chemical hot spots: Scanning tunneling microscopy measurements identify active sites on catalyst surfaces September 7th, 2017

More durable, less expensive fuel cells: University of Delaware researchers have developed a new technology that could speed up the commercialization of fuel cell vehicles September 5th, 2017

Sensors

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Single ‘solitons’ promising for optical technologies October 9th, 2017

Two dimensional materials: Advanced molybdenum selenide near infrared phototransistors September 27th, 2017

Enhancing the sensing capabilities of diamonds with quantum properties: A simple method can give diamonds the special properties needed for quantum applications such as sensing magnetic fields September 24th, 2017

Discoveries

'Find the Lady' in the quantum world: International team of researchers presents method for quantum-mechanical swapping of positions October 18th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Announcements

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project