Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Brookhaven Lab Chemists Win R&D 100 Award for Fuel Cell Research

(From left) Brookhaven National Laboratory chemists Kotaro Sasaki, Radoslav Adzic, Jia Wang, and Miomir Vukmirovic work on the recently licensed electrocatalysts using a new electron microscope in their laboratory.
(From left) Brookhaven National Laboratory chemists Kotaro Sasaki, Radoslav Adzic, Jia Wang, and Miomir Vukmirovic work on the recently licensed electrocatalysts using a new electron microscope in their laboratory.

Abstract:
Chemist Radoslav Adzic and his research team at the U.S. Department of Energy's Brookhaven National Laboratory have won a 2012 R&D 100 award from R&D Magazine for their work designing durable electrocatalysts for use in fuel cells. Their work could make future fuel cell vehicles more reliable and economical.

Brookhaven Lab Chemists Win R&D 100 Award for Fuel Cell Research

Upton, NY | Posted on June 20th, 2012

The R&D 100 awards recognize the 100 most technologically significant products introduced into the marketplace over the past year. Brookhaven scientists have previously won R&D 100 awards for excellence in a diverse array of fields, including imaging techniques, cancer detection, and microscopes for nanomaterials.

"We are deeply honored to be receiving this prestigious award," said Adzic. "We hope it will lead to even greater interest in this type of catalyst."

Adzic collaborated on the award-winning research with Brookhaven scientists Jia Wang, Miomir Vukmirovic, and Kotaro Sasaki. On Nov. 1, they will be honored alongside the rest of the R&D 100 winners at a banquet in Orlando, FL.

"Congratulations to this year's R&D 100 award winners," said Energy Secretary Steven Chu. "The research and development at the Department of Energy's laboratories continues to help the nation meet our energy challenges, strengthen our national security and improve our economic competitiveness."

Fuel cells convert chemical energy into electricity, using a catalyst for the necessary oxidation and reduction reactions. Platinum is the most efficient electrocatalyst for fuel cells, but it is also expensive and unstable.

To help reduce the cost and improve stability, the Brookhaven team developed an electrocatalyst that uses a very small amount of platinum, a one atom thick nanoshell surrounding a palladium or palladium alloy nanoparticle core. Proper design of the alloy core both improves the catalytic activity and the durability of the platinum monolayer nanoshell.

"The core-shell structure of this catalyst is amenable to tailoring its properties," Adzic said.

Since platinum in automotive fuel cells tends to corrode during the voltage cycling of stop-and-go driving, the improved durability through proper design of the palladium alloy core is an important improvement. The core keeps the platinum stable and further increases the fuel cell's resilience.

The resulting catalyst is durable, highly active, and significantly less expensive than other catalysts, containing just one-tenth as much as platinum as a conventional catalyst. With platinum hovering at prices approaching $50,000 a kilogram, this advance represents a significant potential cost savings for fuel cell manufacturers.

Adzic's group is now working on finding alternative materials for the palladium core to make electrocatalysts even more affordable.

Earlier this year, the team's invention was licensed for use in electric vehicles by N.E. Chemcat Corporation, Japan's leading catalyst manufacturer.

Adzic's research is funded by the DOE Office of Energy Efficiency and Renewable Energy and the DOE Office of Science, with some Cooperative Research and Development (CRADA) funding from industrial partners.

Written by Aviva Hope Rutkin

####

About Brookhaven National Laboratory
One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.

For more information, please click here

Contacts:
Brookhaven National Laboratory www.bnl.gov
Media & Communications Office Phone: (631)344-3174
Bldg. 400 - P.O. Box 5000 Fax: (631)344-3368
Upton, NY 11973

Kay Cordtz
(631) 344-2719

or
Peter Genzer
(631) 344-3174

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Laboratories

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

ORNL demonstrates large-scale technique to produce quantum dots May 21st, 2016

Scientists take a major leap toward a 'perfect' quantum metamaterial: Berkeley Lab, UC Berkeley researchers lead study that uses trapped atoms in an artificial crystal of light May 13th, 2016

Atomic force microscope reveals molecular ghosts: Mapping molecules with atomic precision expands toolbox for designing new catalytic reactions May 11th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Thermal modification of wood and a complex study of its properties by magnetic resonance May 26th, 2016

Announcements

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Energy

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Technique improves the efficacy of fuel cells: Research demonstrates a new phase transition from metal to ionic conductor May 18th, 2016

Fuel Cells

Technique improves the efficacy of fuel cells: Research demonstrates a new phase transition from metal to ionic conductor May 18th, 2016

Ruthenium nanoframes open the doors to better catalysts April 4th, 2016

Saving sunshine for a rainy day: New catalyst offers efficient storage of green energy: Team led by U of T Engineering designs world's most efficient catalyst for storing energy as hydrogen by splitting water molecules March 28th, 2016

Carbon leads the way in clean energy: Groundbreaking research at Griffith University is leading the way in clean energy, with the use of carbon as a way to deliver energy using hydrogen March 23rd, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic