Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Brookhaven Lab Chemists Win R&D 100 Award for Fuel Cell Research

(From left) Brookhaven National Laboratory chemists Kotaro Sasaki, Radoslav Adzic, Jia Wang, and Miomir Vukmirovic work on the recently licensed electrocatalysts using a new electron microscope in their laboratory.
(From left) Brookhaven National Laboratory chemists Kotaro Sasaki, Radoslav Adzic, Jia Wang, and Miomir Vukmirovic work on the recently licensed electrocatalysts using a new electron microscope in their laboratory.

Abstract:
Chemist Radoslav Adzic and his research team at the U.S. Department of Energy's Brookhaven National Laboratory have won a 2012 R&D 100 award from R&D Magazine for their work designing durable electrocatalysts for use in fuel cells. Their work could make future fuel cell vehicles more reliable and economical.

Brookhaven Lab Chemists Win R&D 100 Award for Fuel Cell Research

Upton, NY | Posted on June 20th, 2012

The R&D 100 awards recognize the 100 most technologically significant products introduced into the marketplace over the past year. Brookhaven scientists have previously won R&D 100 awards for excellence in a diverse array of fields, including imaging techniques, cancer detection, and microscopes for nanomaterials.

"We are deeply honored to be receiving this prestigious award," said Adzic. "We hope it will lead to even greater interest in this type of catalyst."

Adzic collaborated on the award-winning research with Brookhaven scientists Jia Wang, Miomir Vukmirovic, and Kotaro Sasaki. On Nov. 1, they will be honored alongside the rest of the R&D 100 winners at a banquet in Orlando, FL.

"Congratulations to this year's R&D 100 award winners," said Energy Secretary Steven Chu. "The research and development at the Department of Energy's laboratories continues to help the nation meet our energy challenges, strengthen our national security and improve our economic competitiveness."

Fuel cells convert chemical energy into electricity, using a catalyst for the necessary oxidation and reduction reactions. Platinum is the most efficient electrocatalyst for fuel cells, but it is also expensive and unstable.

To help reduce the cost and improve stability, the Brookhaven team developed an electrocatalyst that uses a very small amount of platinum, a one atom thick nanoshell surrounding a palladium or palladium alloy nanoparticle core. Proper design of the alloy core both improves the catalytic activity and the durability of the platinum monolayer nanoshell.

"The core-shell structure of this catalyst is amenable to tailoring its properties," Adzic said.

Since platinum in automotive fuel cells tends to corrode during the voltage cycling of stop-and-go driving, the improved durability through proper design of the palladium alloy core is an important improvement. The core keeps the platinum stable and further increases the fuel cell's resilience.

The resulting catalyst is durable, highly active, and significantly less expensive than other catalysts, containing just one-tenth as much as platinum as a conventional catalyst. With platinum hovering at prices approaching $50,000 a kilogram, this advance represents a significant potential cost savings for fuel cell manufacturers.

Adzic's group is now working on finding alternative materials for the palladium core to make electrocatalysts even more affordable.

Earlier this year, the team's invention was licensed for use in electric vehicles by N.E. Chemcat Corporation, Japan's leading catalyst manufacturer.

Adzic's research is funded by the DOE Office of Energy Efficiency and Renewable Energy and the DOE Office of Science, with some Cooperative Research and Development (CRADA) funding from industrial partners.

Written by Aviva Hope Rutkin

####

About Brookhaven National Laboratory
One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.

For more information, please click here

Contacts:
Brookhaven National Laboratory www.bnl.gov
Media & Communications Office Phone: (631)344-3174
Bldg. 400 - P.O. Box 5000 Fax: (631)344-3368
Upton, NY 11973

Kay Cordtz
(631) 344-2719

or
Peter Genzer
(631) 344-3174

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Chains of nanogold forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Nanotech Grants Options September 22nd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Laboratories

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

Electron beam microscope directly writes nanoscale features in liquid with metal ink September 16th, 2016

World's most powerful X-ray takes a 'sledgehammer' to molecules September 14th, 2016

NIST illuminates transfer of nanoscale motion through microscale machine September 14th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

PHENOMEN is a FET-Open Research Project aiming to lay the foundations a new information technology September 19th, 2016

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

Electron beam microscope directly writes nanoscale features in liquid with metal ink September 16th, 2016

Announcements

Chains of nanogold forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Nanotech Grants Options September 22nd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Energy

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

New perovskite research discoveries may lead to solar cell, LED advances September 12th, 2016

NREL discovery creates future opportunity in quantum computing: Research into perovskites looks beyond material's usage for efficient solar cells September 9th, 2016

Researchers design solids that control heat with spinning superatoms: Carnegie Mellon University and Columbia University collaborators discover the cause of vastly different thermal conductivities in superatomic structural analogues September 8th, 2016

Fuel Cells

Carbon-coated iron catalyst structure could lead to more-active fuel cells September 15th, 2016

Imperial College use Kleindiek micromanipulators in their research into electrochemical energy devices September 6th, 2016

Iowa State engineers treat printed graphene with lasers to enable paper electronics September 2nd, 2016

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

Bringing graphene speakers to the mobile market (video) September 12th, 2016

Novel nanoscale detection of real-time DNA amplification holds promise for diagnostics: Research team led by Nagoya University develop a label-free method for detecting DNA amplification in real time based on refractive index changes in diffracted light September 12th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic