Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > The University of Colorado at Boulder uses Nanoparticle Tracking Analysis to characterize microvesicles as potential biomarkers

Abstract:
NanoSight, leading manufacturers of unique nanoparticle characterization technology, reports on the work of Professor Hang (Hubert) Yin's group at the University of Colorado at Boulder where they apply Nanoparticle Tracking Analysis (NTA) to characterize biological nanoparticles such as microvesicles.

The University of Colorado at Boulder uses Nanoparticle Tracking Analysis to characterize microvesicles as potential biomarkers

Salisbury, UK | Posted on June 19th, 2012

The Yin Research Lab is interested in studying at the interface of chemistry, Biology and engineering with a particular focus on structure-based drug design, cell signaling, biochemistry, biotechnology development and membrane protein simulations.

The main research goal of the group is to identify and design peptides that sense membrane curvature to better understand protein/peptide-lipid interactions and potentially create non-invasive probes to detect highly curved extracellular vesicles. Currently, we are studying microvesicles as potential biomarkers of tumor progression and cancer metastasis. These nanoparticles are shed into bodily fluids targeting other cells in the body and are vital for inter-cellular communication.

Their experimental protocol involves lipid vesicle preparation by pressure-controlled extrusion through different membrane pore sizes. Different lipid vesicle sizes are prepared in order to mimic the size range of the microvesicles that are shed into the extracellular matrix. Following vesicle extrusion, it is important to validate the vesicle size. By using Nanoparticle Tracking Analysis (NTA) technology, the results provide an accurate quantification of different populations of vesicle sizes present in the sample.

Prior to NTA, the group mostly used dynamic light scattering (DLS) to determine the sizes of our synthetic lipid vesicles. Speaking on their use of NTA, Professor Yin says "NTA brought several benefits over existing methods. The detection ranges from 10 - 2000 nm for vesicle sizes, dimensions that cover our liposome size of interest. Flow cytometry has a lower limit detection of ~200 nm to accurately measure particle sizes so did not reach our lower requirement while DLS measures the average size of all the particles present in the sample rather than accurately distinguish different pools of vesicle sizes, often creating a bias towards larger particles."

The group has recently published a paper in the Journal of Visualized Experimentation that used the NTA technology entitled Constant Pressure-controlled Extrusion Method for the Preparation of Nano-sized Liposomes (Leslie A. Morton, Jonel P. Saludes, Hang Yin). To learn more, please refer to doi: 10.3791/4151.

To find out about the company and to learn more about particle characterization using NanoSight's unique nanoparticle tracking analysis solutions, visit www.nanosight.com and register to receive the next issue of NanoTrail, the company's electronic newsletter.

####

About NanoSight
NanoSight delivers the world's most versatile and proven multi-parameter nanoparticle analysis in a single instrument.

NanoSight's "Nanoparticle Tracking Analysis" (NTA) detects and visualizes populations of nanoparticles in liquids down to 10 nm, dependent on material, and measures the size of each particle from direct observations of diffusion. Additionally, NanoSight measures concentration and a fluorescence mode differentiates suitably-labelled particles within complex background suspensions. Zeta potential measurements assess the surface charge on particles. NTA's particle-by-particle methodology goes beyond traditional light scattering and other ensemble techniques in providing high-resolution particle size distributions and validates data with information-rich video files of the particles moving under Brownian motion.

NanoSight's simultaneous multiparameter characterization matches the demands of complex biological systems, hence its wide application in development of drug delivery systems, of viral vaccines, and in nanotoxicology. This real-time data gives insight into the kinetics of protein aggregation and other time-dependent phenomena in a qualitative and quantitative manner. NanoSight has a growing role in biodiagnostics, being proven in detection and speciation of nanovesicles (exosomes) and microvesicles.

NanoSight has installed more than 450 systems worldwide with users including BASF, GlaxoSmithKline, Merck, Novartis, Pfizer, Proctor and Gamble, Roche and Unilever together with the most eminent universities and research institutes. NanoSight's technology is validated by 400+ third party papers citing NanoSight results, consolidating NanoSight's leadership position in nanoparticle characterization.

For more information, please click here

Contacts:
NanoSight Limited
Minton Park
London Road
Amesbury SP4 7RT UK
T +44(0)1980 676060
F +44(0)1980 624703
www.nanosight.com


Talking Science Limited
39 de Bohun Court
Saffron Walden
Essex CB10 2BA UK
T +44(0)1799 521881
M +44(0)7843 012997
www.talking-science.com

Copyright © NanoSight

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Haydale Named Lead Sponsor for Cambridge Graphene Festival May 22nd, 2015

Simulations predict flat liquid May 21st, 2015

Researchers develop new way to manufacture nanofibers May 21st, 2015

Imaging

Aspen Aerogels to Present at the Cowen and Company Technology, Media & Telecom Conference May 21st, 2015

Samtec, Global Provider of Interconnect Systems, Joins IRT Nanoelec Silicon Photonics Program May 21st, 2015

Academic/Education

SUNY Poly CNSE and NIOSH Launch Federal Nano Health and Safety Consortium: May 20th, 2015

New JEOL E-Beam Lithography System to Enhance Quantum NanoFab Capabilities May 6th, 2015

FEI Partners With the George Washington University to Equip New Science & Engineering Hall: Suite of new high-performance microscopes will be used for cutting-edge experiments at GWs new research facility April 29th, 2015

Renishaw Raman systems used to study 2D materials at Boston University, Massachusetts, USA. April 28th, 2015

Nanomedicine

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Researchers develop new way to manufacture nanofibers May 21st, 2015

Effective Nano-Micelles Designed in Iran to Treat Cancer May 20th, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

Announcements

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Haydale Named Lead Sponsor for Cambridge Graphene Festival May 22nd, 2015

INSIDDE: Uncovering the real history of art using a graphene scanner May 21st, 2015

Tools

Nanometrics Announces Live Webcast of Upcoming Investor and Analyst Day May 20th, 2015

Taking control of light emission: Researchers find a way of tuning light waves by pairing 2 exotic 2-D materials May 20th, 2015

DELMIC announces a workshop hosted by Phenom World on Integrated CLEM to be held on Wednesday June 24th at the Francis Crick Institute (Lincoln Inn Fields Laboratory). May 19th, 2015

DiATOME enables surface preparation for AFM and FIB May 19th, 2015

Nanobiotechnology

Supercomputer unlocks secrets of plant cells to pave the way for more resilient crops: IBM partners with University of Melbourne and UQ May 21st, 2015

Researchers develop new way to manufacture nanofibers May 21st, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

Studying dynamics of ion channels May 18th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project