Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > In nanotube growth, errors are not an option: Rice, Hong Kong Polytechnic, Tsinghua researchers probe healing of nanotube defects

Defects in nanotubes heal very quickly in a very small zone at or near the iron catalyst before they ever get into the tube wall, according to calculations by theoretical physicists at Rice University, Hong Kong Polytechnic University and Tsinghua
Defects in nanotubes heal very quickly in a very small zone at or near the iron catalyst before they ever get into the tube wall, according to calculations by theoretical physicists at Rice University, Hong Kong Polytechnic University and Tsinghua

Abstract:
At the right temperature, with the right catalyst, there's no reason a perfect single-walled carbon nanotube 50,000 times thinner than a human hair can't be grown a meter long.

In nanotube growth, errors are not an option: Rice, Hong Kong Polytechnic, Tsinghua researchers probe healing of nanotube defects

Houston, TX | Posted on June 18th, 2012

That calculation is one result of a study by collaborators at Rice, Hong Kong Polytechnic and Tsinghua universities who explored the self-healing mechanism that could make such extraordinary growth possible. That's important to scientists who see high-quality carbon nanotubes as critical to advanced materials and, if they can be woven into long cables, power distribution over the grid of the future.

The report published online by Physical Review Letters is by Rice theoretical physicist Boris Yakobson; Feng Ding, an adjunct assistant professor at Rice and an assistant professor at Hong Kong Polytechnic; lead author Qinghong Yuan, a postdoctoral researcher at Hong Kong Polytechnic; and Zhiping Xu, a professor of engineering mechanics at Tsinghua and a former postdoctoral researcher at Rice.

They determined that iron is the best and quickest among common catalysts at healing topological defects - rings with too many or too few atoms - that inevitably bubble up during the formation of nanotubes and affect their valuable electronic and physical properties. The right combination of factors, primarily temperature, leads to kinetic healing in which carbon atoms gone astray are redirected to form the energetically favorable hexagons that make up nanotubes and their flat cousin, graphene. The team employed density functional theory to analyze the energies necessary for the transformation.

"It is surprising that the healing of all potential defects — pentagons, heptagons and their pairs — during carbon nanotube growth is quite easy," said Ding, who was a research scientist in Yakobson's Rice lab from 2005 to 2009. "Only less than one-10 billionth may survive an optimum condition of growth. The rate of defect healing is amazing. If we take hexagons as good guys and others as bad guys, there would be only one bad guy on Earth."

The energies associated with each carbon atom determine how it finds its place in the chicken-wire-like form of a nanotube, said Yakobson, Rice's Karl F. Hasselmann Chair in Engineering and a professor of materials science and mechanical engineering and of chemistry. But there has been a long debate among scientists over what actually happens at the interface between the catalyst and a growing tube.

"There have been two hypotheses," Yakobson said. "A popular one was that defects are being created quite frequently and get into the wall of the tube, but then later they anneal. There's some kind of fixing process. Another hypothesis is that they basically don't form at all, which sounds quite unreasonable.

"This was all just talk; there was no quantitative analysis. And that's where this work makes an important contribution. It evaluates quantitatively, based on state-of-the-art computations, specifically how fast this annealing can take place, depending on location," he said.

A nanotube grows in a furnace as carbon atoms are added, one by one, at the catalyst. It's like building the peak of a skyscraper first and adding bricks to the bottom. But because those bricks are being added at a furious rate - millions in a matter of minutes - mistakes can happen, altering the structure.

In theory, if one ring has five or seven atoms instead of six, it would skew the way all subsequent atoms in the chain orient themselves; an isolated pentagon would turn the nanotube into a cone, and a heptagon would turn it into a horn, Yakobson said.

But calculations also showed such isolated defects cannot exist in a nanotube wall; they would always appear in 5/7 pairs. That makes a quick fix easier: If one atom can be prompted to move from the heptagon to the pentagon, both rings come up sixes.

The researchers found that very transition happens best when carbon nanotubes are grown at temperatures around 930 kelvins (1,214 degrees Fahrenheit). That is the optimum for healing with an iron catalyst, which the researchers found has the lowest energy barrier and reaction energy among the three common catalysts considered, including nickel and cobalt.

Once a 5/7 forms at the interface between the catalyst and the growing nanotube, healing must happen very quickly. The further new atoms push the defect into the nanotube wall, the less likely it is to be healed, they determined; more than four atoms away from the catalyst, the defect is locked in.

Tight control of the conditions under which nanotubes grow can help them self-correct on the fly. Errors in atom placement are caught and fixed in a fraction of a millisecond, before they become part of the nanotube wall.

The researchers also determined through simulations that the slower the growth, the longer a perfect nanotube could be. A nanotube growing about 1 micrometer a second at 700 kelvins could potentially reach the meter milestone, they found.

The work at Rice University was initially supported by the National Science Foundation and at a later stage by an Office of Naval Research grant.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is known for its “unconventional wisdom.” With 3,708 undergraduates and 2,374 graduate students, Rice’s undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 4 for “best value” among private universities by Kiplinger’s Personal Finance. To read “What they’re saying about Rice,” go to www.rice.edu/nationalmedia/Rice.pdf.

For more information, please click here

Contacts:
David Ruth
713-348-6327


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract at:

Related News Press

News and information

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

Nanocatalysis for organic chemistry: This research article by Dr. Qien Xu et al. is published in Current Organic Chemistry, Volume 20, Issue 19, 2016 August 30th, 2016

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Meteorite impact on a nano scale August 29th, 2016

Chemistry

Nanocatalysis for organic chemistry: This research article by Dr. Qien Xu et al. is published in Current Organic Chemistry, Volume 20, Issue 19, 2016 August 30th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

New approach to determining how atoms are arranged in materials August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Nanotubes/Buckyballs/Fullerenes

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

McMaster researchers resolve a problem that has been holding back a technological revolution August 18th, 2016

'Second skin' protects soldiers from biological and chemical agents August 5th, 2016

Carbon nanotube 'stitches' make stronger, lighter composites: Method to reinforce these materials could help make airplane frames lighter, more damage-resistant August 4th, 2016

Discoveries

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

Nanocatalysis for organic chemistry: This research article by Dr. Qien Xu et al. is published in Current Organic Chemistry, Volume 20, Issue 19, 2016 August 30th, 2016

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Meteorite impact on a nano scale August 29th, 2016

Materials/Metamaterials

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Unraveling the crystal structure of a -70° Celsius superconductor, a world first: Significant advancement in the realization of room-temperature superconductors August 25th, 2016

Semblant to Present at China Mobile Manufacturing Forum 2016 August 25th, 2016

Announcements

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

Nanocatalysis for organic chemistry: This research article by Dr. Qien Xu et al. is published in Current Organic Chemistry, Volume 20, Issue 19, 2016 August 30th, 2016

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Meteorite impact on a nano scale August 29th, 2016

Military

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Nanoparticles that speed blood clotting may someday save lives August 23rd, 2016

Curbing the life-long effects of traumatic brain injury August 19th, 2016

Lab team spins ginger into nanoparticles to heal inflammatory bowel disease August 19th, 2016

Research partnerships

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

A new way to display the 3-D structure of molecules: Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples August 21st, 2016

Researchers watch catalysts at work August 19th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic