Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > SU researchers use nanotechnology to harness power of fireflies

Abstract:
What do fireflies, nanorods and Christmas lights have in common? Someday, consumers may be able to purchase multicolor strings of light that don't need electricity or batteries to glow. Scientists in Syracuse University's College of Arts and Sciences found a new way to harness the natural light produced by fireflies (called bioluminescence) using nanoscience. Their breakthrough produces a system that is 20 to 30 times more efficient than those produced during previous experiments.

SU researchers use nanotechnology to harness power of fireflies

Syracuse, NY | Posted on June 16th, 2012

It's all about the size and structure of the custom, quantum nanorods, which are produced in the laboratory by Mathew Maye, assistant professor of chemistry in SU's College of Arts and Sciences; and Rabeka Alam, a chemistry Ph.D. candidate. Maye is also a member of the Syracuse Biomaterials Institute.

"Firefly light is one of nature's best examples of bioluminescence," Maye says. "The light is extremely bright and efficient. We've found a new way to harness biology for nonbiological applications by manipulating the interface between the biological and nonbiological components."

Their work, "Designing Quantum Rods for Optimized Energy Transfer with Firefly Luciferase Enzymes," was published online May 23 in Nano Letters and is forthcoming in print. Nano Letters is a premier journal of the American Chemical Society and one of the highest-rated journals in the nanoscience field. Collaborating on the research were Professor Bruce Branchini and Danielle Fontaine, both from Connecticut College.

Fireflies produce light through a chemical reaction between luciferin and its counterpart, the enzyme luciferase. In Maye's laboratory, the enzyme is attached to the nanorod's surface; luciferin, which is added later, serves as the fuel. The energy that is released when the fuel and the enzyme interact is transferred to the nanorods, causing them to glow. The process is called Bioluminescence Resonance Energy Transfer (BRET).

"The trick to increasing the efficiency of the system is to decrease the distance between the enzyme and the surface of the rod and to optimize the rod's architecture," Maye says. "We designed a way to chemically attach genetically manipulated luciferase enzymes directly to the surface of the nanorod." Maye's collaborators at Connecticut College provided the genetically manipulated luciferase enzyme.

The nanorods are composed of an outer shell of cadmium sulfide and an inner core of cadmium seleneide. Both are semiconductor metals. Manipulating the size of the core, and the length of the rod, alters the color of the light that is produced. The colors produced in the laboratory are not possible for fireflies. Maye's nanorods glow green, orange and red. Fireflies naturally emit a yellowish glow. The efficiency of the system is measured on a BRET scale. The researchers found their most efficient rods (BRET scale of 44) occurred for a special rod architecture (called rod-in-rod) that emitted light in the near-infrared light range. Infrared light has longer wavelengths than visible light and is invisible to the eye. Infrared illumination is important for such things as night vision goggles, telescopes, cameras and medical imaging.

Maye's and Alam's firefly-conjugated nanorods currently exist only in their chemistry laboratory. Additional research is ongoing to develop methods of sustaining the chemical reactionóand energy transferófor longer periods of time and to "scale up" the system. Maye believes the system holds the most promise for future technologies that that will convert chemical energy directly to light; however, the idea of glowing nanorods substituting for LED lights is not the stuff of science fiction.

"The nanorods are made of the same materials used in computer chips, solar panels and LED lights," Maye says. "It's conceivable that someday firefly-coated nanorods could be inserted into LED-type lights that you don't have to plug in."

Maye's research was funded by a Department of Defense PECASE award sponsored by the Air Force Office of Scientific Research (AFOSR). The AFOSR and the National Science Foundation supported the work performed by Maye's collaborators at Connecticut College.

####

For more information, please click here

Contacts:
Judy Holmes
(315) 443-8085

Copyright © Syracuse University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A step closer to understanding quantum mechanics: Swansea Universityís physicists develop a new quantum simulation protocol October 22nd, 2017

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Techís Contribution Includes Litenís Knowhow in Magnetic Materials and Simulation And Letiís Expertise in Wide-bandgap Semiconductors October 20th, 2017

Display technology/LEDs/SS Lighting/OLEDs

The secret to improving liquid crystal's mechanical performance: Better lubricating properties of lamellar liquid crystals could stem from changing the mobility of their structural dislocations by adding nanoparticles October 13th, 2017

Missing atoms in a forgotten crystal bring luminescence October 10th, 2017

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Nanocrystalline LEDs: Red, green, yellow, blue ... August 7th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Techís Contribution Includes Litenís Knowhow in Magnetic Materials and Simulation And Letiís Expertise in Wide-bandgap Semiconductors October 20th, 2017

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Discoveries

A step closer to understanding quantum mechanics: Swansea Universityís physicists develop a new quantum simulation protocol October 22nd, 2017

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Announcements

A step closer to understanding quantum mechanics: Swansea Universityís physicists develop a new quantum simulation protocol October 22nd, 2017

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Techís Contribution Includes Litenís Knowhow in Magnetic Materials and Simulation And Letiís Expertise in Wide-bandgap Semiconductors October 20th, 2017

Military

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

On the road to fire-free, lithium-ion batteries made with asphalt October 12th, 2017

A dash of gold improves microlasers: The precious metal provides a 'nano' solution for improving disease detection, defense and cybersecurity applications October 9th, 2017

Quantum Dots/Rods

Quantum communications bend to our needs: By changing the wavelengths of entangled photons to those used in telecommunications, researchers see quantum technology take a major leap forward September 28th, 2017

Band Gaps, Made to Order: Engineers create atomically thin superlattice materials with precision September 26th, 2017

New approach on research and design for CQD catalysts in World Scientific NANO August 2nd, 2017

Coupling a nano-trumpet with a quantum dot enables precise position determination July 14th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project