Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Self-assembling nanocubes for next generation antennas and lenses

Abstract:
Researchers at the University of California, San Diego Jacobs School of Engineering have developed a technique that enables metallic nanocrystals to self-assemble into larger, complex materials for next-generation antennas and lenses. The metal nanocrystals are cube-shaped and, like bricks or Tetris blocks, spontaneously organize themselves into larger-scale structures with precise orientations relative to one another. Their findings were published online June 10 in the journal Nature Nanotechnology.

Self-assembling nanocubes for next generation antennas and lenses

San Diego, CA | Posted on June 13th, 2012

This research is in the new field of nanoplasmonics, where researchers are developing materials that can manipulate light using structures that are smaller than the wavelength of light itself. The nanocubes used in this study were less than 0.1 microns; by comparison, the breadth of a human hair is 100 microns. Precise orientation is necessary so that the cubes can confine light (for a nanoscale antenna) or focus light (for a nanoscale lens) at different wavelengths.

"Our findings could have important implications in developing new optical chemical and biological sensors, where light interacts with molecules, and in optical circuitry, where light can be used to deliver information," said Andrea Tao, a professor in the Department of NanoEngineering at the Jacobs School. Tao collaborated with nanoengineering professor Gaurav Arya and post-doctoral researcher Bo Gao.

To construct objects like antennas and lenses, Tao's team is using chemically synthesized metal nanocrystals. The nanocrystals can be synthesized into different shapes to build these structures; in this study, Tao's team created tiny cubes composed of crystalline silver that can confine light when organized into multi-particle groupings. Confining light into ultra-small volumes could allow optical sensors that are extremely sensitive and that could allow researchers to monitor how a single molecule moves, reacts, and changes with time.

To control how the cubes organize, Tao and her colleagues developed a method to graft polymer chains to the silver cube surfaces that modify how the cubes interact with each other. Normally when objects like cubes stack, they pack side-by-side like Tetris blocks. Using simulations, Tao's team predicted that placing short polymer chains on the cube surface would cause them to stack normally, while placing long polymer chains would cause the cubes to stack edge-to-edge. The approach is simple, robust, and versatile.

In demonstrating their technique, the researchers created macroscopic films of nanocubes with these two different orientations and showed that the films reflected and transmitted different wavelengths of light.

The research was supported by the National Science Foundation, the Hellman Foundation, and Jacobs School of Engineering at UC San Diego.

####

For more information, please click here

Contacts:
Catherine Hockmuth
858-822-1359

Copyright © University of California, San Diego

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New flexible material can make any window 'smart' August 23rd, 2016

University of Puerto Rico and NASA back in the news XEI reports August 23rd, 2016

Nanoparticles that speed blood clotting may someday save lives August 23rd, 2016

Spider silk: Mother Nature's bio-superlens August 22nd, 2016

Thin films

Self-cleaning, anti-reflective, microorganism-resistant coatings: Researchers at the UPV/EHU-University of the Basque Country are modifying surface properties of materials to obtain specific properties at a lower cost August 9th, 2016

Scientists find a way of acquiring graphene-like films from salts to boost nanoelectronics: Physicists use supercomputers to find a way of making 'imitation graphene' from salt July 30th, 2016

Cambridge Advanced Imaging Centre praises support film consistency and quality from EM Resolutions July 5th, 2016

New nanomaterial offers promise in bendable, wearable electronic devices: Electroplated polymer makes transparent, highly conductive, ultrathin film June 13th, 2016

Govt.-Legislation/Regulation/Funding/Policy

New flexible material can make any window 'smart' August 23rd, 2016

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Spider silk: Mother Nature's bio-superlens August 22nd, 2016

A new way to display the 3-D structure of molecules: Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples August 21st, 2016

Self Assembly

Smarter self-assembly opens new pathways for nanotechnology: Brookhaven Lab scientists discover a way to create billionth-of-a-meter structures that snap together in complex patterns with unprecedented efficiency August 9th, 2016

Magnetic atoms arranged in neat rows: FAU physicists enable one-dimensional atom chains to grow August 5th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

WSU researchers develop shape-changing 'smart' material: Heat, light stimulate self-assembly July 4th, 2016

Discoveries

New flexible material can make any window 'smart' August 23rd, 2016

Nanoparticles that speed blood clotting may someday save lives August 23rd, 2016

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Spider silk: Mother Nature's bio-superlens August 22nd, 2016

Materials/Metamaterials

New flexible material can make any window 'smart' August 23rd, 2016

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Industrial Nanotech, Inc. Provides Shareholder Update August 22nd, 2016

Carbodeon Ltd Oy Closes EUR 1.5 million Funding Round From Straightforward Capital: Carbodeon will accelerate its nanodiamonds business and expand manufacturing capacity August 21st, 2016

Announcements

New flexible material can make any window 'smart' August 23rd, 2016

University of Puerto Rico and NASA back in the news XEI reports August 23rd, 2016

Nanoparticles that speed blood clotting may someday save lives August 23rd, 2016

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic