Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Self-assembling nanocubes for next generation antennas and lenses

Abstract:
Researchers at the University of California, San Diego Jacobs School of Engineering have developed a technique that enables metallic nanocrystals to self-assemble into larger, complex materials for next-generation antennas and lenses. The metal nanocrystals are cube-shaped and, like bricks or Tetris blocks, spontaneously organize themselves into larger-scale structures with precise orientations relative to one another. Their findings were published online June 10 in the journal Nature Nanotechnology.

Self-assembling nanocubes for next generation antennas and lenses

San Diego, CA | Posted on June 13th, 2012

This research is in the new field of nanoplasmonics, where researchers are developing materials that can manipulate light using structures that are smaller than the wavelength of light itself. The nanocubes used in this study were less than 0.1 microns; by comparison, the breadth of a human hair is 100 microns. Precise orientation is necessary so that the cubes can confine light (for a nanoscale antenna) or focus light (for a nanoscale lens) at different wavelengths.

"Our findings could have important implications in developing new optical chemical and biological sensors, where light interacts with molecules, and in optical circuitry, where light can be used to deliver information," said Andrea Tao, a professor in the Department of NanoEngineering at the Jacobs School. Tao collaborated with nanoengineering professor Gaurav Arya and post-doctoral researcher Bo Gao.

To construct objects like antennas and lenses, Tao's team is using chemically synthesized metal nanocrystals. The nanocrystals can be synthesized into different shapes to build these structures; in this study, Tao's team created tiny cubes composed of crystalline silver that can confine light when organized into multi-particle groupings. Confining light into ultra-small volumes could allow optical sensors that are extremely sensitive and that could allow researchers to monitor how a single molecule moves, reacts, and changes with time.

To control how the cubes organize, Tao and her colleagues developed a method to graft polymer chains to the silver cube surfaces that modify how the cubes interact with each other. Normally when objects like cubes stack, they pack side-by-side like Tetris blocks. Using simulations, Tao's team predicted that placing short polymer chains on the cube surface would cause them to stack normally, while placing long polymer chains would cause the cubes to stack edge-to-edge. The approach is simple, robust, and versatile.

In demonstrating their technique, the researchers created macroscopic films of nanocubes with these two different orientations and showed that the films reflected and transmitted different wavelengths of light.

The research was supported by the National Science Foundation, the Hellman Foundation, and Jacobs School of Engineering at UC San Diego.

####

For more information, please click here

Contacts:
Catherine Hockmuth
858-822-1359

Copyright © University of California, San Diego

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New technology can detect hundreds of proteins in a single sample: Improvement of barcoding technique offers cost-effective alternative to current technology August 13th, 2018

Amazingly 'green' synthesis method for high-tech dyes: Dyes that are also of great interest for organic electronics have recently been prepared and crystallised at TU Wien. All that is required is just water, albeit under highly unusual conditions. August 10th, 2018

Biomimetic micro/nanoscale fiber reinforced composites August 10th, 2018

Breaking down the Wiedemann-Franz law: In a study exploring the coupling between heat and particle currents in a gas of strongly interacting atoms, physicists at ETH Zurich find puzzling behaviours August 10th, 2018

Thin films

A colossal breakthrough for topological spintronics: BiSb expands the potential of topological insulators for ultra-low-power electronic devices August 2nd, 2018

Picosunís ALD solutions make quality watches tick July 26th, 2018

New optical sensor can determine if molecules are left or right 'handed' June 13th, 2018

Organic solar cells reach record efficiency, benchmark for commercialization April 23rd, 2018

Govt.-Legislation/Regulation/Funding/Policy

New technology can detect hundreds of proteins in a single sample: Improvement of barcoding technique offers cost-effective alternative to current technology August 13th, 2018

Breaking down the Wiedemann-Franz law: In a study exploring the coupling between heat and particle currents in a gas of strongly interacting atoms, physicists at ETH Zurich find puzzling behaviours August 10th, 2018

Yale-NUS scientist and collaborators solve open theoretical problem on electron interactions August 10th, 2018

Scientists squeeze nanocrystals in a liquid droplet into a solid-like state and back again: Simple chemical technique transforms crystal mixture where 2 liquids meet August 9th, 2018

Self Assembly

DNA drives design principles for lighter, thinner optical displays: Lighter gold nanoparticles could replace thicker, heavier layered polymers used in displaysí back-reflectors June 27th, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Self-assembling 3D battery would charge in seconds May 22nd, 2018

Engineered polymer membranes could be new option for water treatment May 6th, 2018

Discoveries

New technology can detect hundreds of proteins in a single sample: Improvement of barcoding technique offers cost-effective alternative to current technology August 13th, 2018

Superconductivity above 10 K discovered in a novel quasi-one-dimensional compound K2Mo3As3 August 10th, 2018

Biomimetic micro/nanoscale fiber reinforced composites August 10th, 2018

Breaking down the Wiedemann-Franz law: In a study exploring the coupling between heat and particle currents in a gas of strongly interacting atoms, physicists at ETH Zurich find puzzling behaviours August 10th, 2018

Materials/Metamaterials

Biomimetic micro/nanoscale fiber reinforced composites August 10th, 2018

Yale-NUS scientist and collaborators solve open theoretical problem on electron interactions August 10th, 2018

Quantum chains in graphene nanoribbons: Breakthrough in nanoresearch August 9th, 2018

Kavli Lectures: New vision of nanomaterial synthesis and light-fueled space travel August 8th, 2018

Announcements

New technology can detect hundreds of proteins in a single sample: Improvement of barcoding technique offers cost-effective alternative to current technology August 13th, 2018

Superconductivity above 10 K discovered in a novel quasi-one-dimensional compound K2Mo3As3 August 10th, 2018

Biomimetic micro/nanoscale fiber reinforced composites August 10th, 2018

Breaking down the Wiedemann-Franz law: In a study exploring the coupling between heat and particle currents in a gas of strongly interacting atoms, physicists at ETH Zurich find puzzling behaviours August 10th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project