Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Elemental and magnetic imaging using X-rays and a microscope

Abstract:
A team of researchers has developed a new microscope that can image the elemental and magnetic properties of a wide range of energy-important materials that are used in devices such as solar cells and solid-state lighting.

Elemental and magnetic imaging using X-rays and a microscope

College Park, MD | Posted on June 13th, 2012

The imager is based on a technique known as X-ray excited luminescence microscopy (XELM). It was created by hitching a standard optical microscope to a synchrotron X-ray source. Synchrotrons produce X-rays and other forms of electromagnetic radiation by sending electrons on a curved path at nearly the speed of light.

When the X-rays strike the material being imaged, some of them are absorbed, which causes the sample to luminesce. The microscope portion of the imager is able to detect differences in this luminescence, which is directly related to both the elements in the sample and their magnetic properties. This technique combines the spatial resolution of optical microscopy with the element and magnetic specificity and precision of synchrotron radiation.

It is able to spatially resolve features as small as one micron. However, this value was degraded in practice due to vibrations or subtle shifting of the systems used to direct the X-ray beam, though future refinements should alleviate any stability issues.

XELM has some advantages over other techniques in that it is especially useful at low temperatures and can image in the presence of electric and magnetic fields. The results were accepted for publication in the American Institute of Physics' journal Review of Scientific Instruments.

###

TITLE: "Elemental and magnetic sensitive imaging using x-ray excited luminescence microscopy"
JOURNAL: Review of Scientific Instruments (rsi.aip.org)
AUTHORS: R.A. Rosenberg (1), S. Zohar (1), D. Keavney (1), R. Divan (2), D. Rosenmann (2), A. Mascarenhas (3), and M.A. Steiner (3)

(1) Advanced Photon Source, Argonne National Laboratory, Argonne, Ill.
(2) Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Ill.
(3) National Renewable Energy Lab, Golden, Colo.

####

For more information, please click here

Contacts:
Charles E. Blue

301-209-3091

Copyright © American Institute of Physics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Developing reliable quantum computers February 22nd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

Imaging

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

Graphene on toast, anyone? Rice University scientists create patterned graphene onto food, paper, cloth, cardboard February 13th, 2018

Display technology/LEDs/SS Lighting/OLEDs

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Atomic Flaws Create Surprising, High-Efficiency UV LED Materials: Subtle surface defects increase UV light emission in greener, more cost-effective LED and catalyst materials February 8th, 2018

Discoveries

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Developing reliable quantum computers February 22nd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

'Memtransistor' brings world closer to brain-like computing: Combined memristor and transistor can process information and store memory with one device February 22nd, 2018

Announcements

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Developing reliable quantum computers February 22nd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

'Memtransistor' brings world closer to brain-like computing: Combined memristor and transistor can process information and store memory with one device February 22nd, 2018

Tools

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

MEMS chips get metatlenses: Combining metasurface lenses with MEMS technology could add high-speed scanning and enhance focusing capability of optical systems February 21st, 2018

Oxford Instruments announces Dr Kate Ross as winner of the 2018 Lee Osheroff Richardson Science Prize for North and South America February 20th, 2018

Energy

Round-the-clock power from smart bowties February 5th, 2018

Silk fibers could be high-tech ‘natural metamaterials’ January 31st, 2018

A simple new approach to plastic solar cells: Osaka University researchers intelligently design new highly efficient organic solar cells based on amorphous electronic materials with potential for easy printing January 28th, 2018

Nature paper by Schlumberger researchers used photothermal based nanoscale IR spectroscopy to analyze heterogeneous process of petroleum generation January 23rd, 2018

Solar/Photovoltaic

A simple new approach to plastic solar cells: Osaka University researchers intelligently design new highly efficient organic solar cells based on amorphous electronic materials with potential for easy printing January 28th, 2018

Tweaking quantum dots powers-up double-pane solar windows: Engineered quantum dots could bring down the cost of solar electricity January 2nd, 2018

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Inorganic-organic halide perovskites for new photovoltaic technology November 6th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project