Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > UCSB Scientists Synthesize First Genetically Evolved Semiconductor Material

First Author
Lukmaan Bawazer
First Author Lukmaan Bawazer

Abstract:
In the not-too-distant future, scientists may be able to use DNA to grow their own specialized materials, thanks to the concept of directed evolution. UC Santa Barbara scientists have, for the first time, used genetic engineering and molecular evolution to develop the enzymatic synthesis of a semiconductor.

UCSB Scientists Synthesize First Genetically Evolved Semiconductor Material

Santa Barbara, CA | Posted on June 13th, 2012

"In the realm of human technologies it would be a new method, but it's an ancient approach in nature," said Lukmaan Bawazer, first author of the paper, "Evolutionary selection of enzymatically synthesized semiconductors from biomimetic mineralization vesicles," published in the Proceedings of the National Academy of Sciences. Bawazer, who was a Ph.D. student at the time, wrote the paper with co-authors at UCSB's Interdepartmental Graduate Program in Biomolecular Science and Engineering; Institute for Collaborative Biotechnologies; California NanoSystems Institute and Materials Research Laboratory; and Department of Molecular, Cellular and Developmental Biology. Daniel Morse, UCSB professor emeritus of biochemistry of molecular genetics, directed the research.

Using silicateins, proteins responsible for the formation of silica skeletons in marine sponges, the researchers were able to generate new mineral architectures by directing the evolution of these enzymes. Silicateins, which are genetically encoded, serve as templates for the silica skeletons and control their mineralization, thus participating in similar types of processes by which animal and human bones are formed. Silica, also known as silicon, is the primary material in most commercially manufactured semiconductors.

In this study, polystyrene microbeads coated with specific silicateins were put through a mineralization reaction by incubating the beads in a water-in-oil emulsion that contained chemical precursors for mineralization: metals of either silicon or titanium dissolved in the oil or water phase of the emulsion. As the silicateins reacted with the dissolved metals, they precipitated them, integrating the metals into the resulting structure and forming nanoparticles of silicon dioxide or titanium dioxide.

With the creation of a silicatein gene pool, through what Bawazer only somewhat euphemistically calls "molecular sex" -- the combination and recombination of various silicatein genetic materials -- the scientists were able to create a multitude of silicateins, and then select for the ones with desired properties.

"This genetic population was exposed to two environmental pressures that shaped the selected minerals: The silicateins needed to make (that is, mineralize) materials directly on the surface of the beads, and then the mineral structures needed to be amenable to physical disruption to expose the encoding genes," said Bawazer. The beads that exhibited mineralization were sorted from the ones that didn't, and then fractured to release the genetic information they contained, which could either be studied, or evolved further.

The process yielded forms of silicatein not available in nature, that behaved differently in the formation of mineral structures. For example, some silicateins self-assembled into sheets and made dispersed mineral nanoparticles, as opposed to more typical agglomerated particles formed by natural silicateins. In some cases, crystalline materials were also formed, demonstrating a crystal-forming ability that was acquired through directed evolution, said Bawazer.

Because silicateins are enzymes, said Bawazer, with relatively long amino acid chains that can fold into precise shapes, there is the potential for more functionality than would be possible using shorter biopolymers or more traditional synthetic approaches. In addition, the process could potentially work with a variety of metals, to evolve different types of materials. By changing the laboratory-controlled environments in which directed evolution occurs, it will be possible to evolve materials with specific capacities, like high performance in an evolved solar cell, for example.

"Here we've demonstrated the evolution of material structure; I'd like to take it a step further and evolve material performance in a functional device," said Bawazer.

Research for this paper was supported by the U.S. Department of Energy.

####

For more information, please click here

Contacts:
Sonia Fernandez

(805) 893-4765
George Foulsham

(805) 893-3071

Copyright © University of California, Santa Barbara (UCSB)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

NanoTechnology for Defense (NT4D) October 22nd, 2014

Mechanism behind nature's sparkles revealed October 22nd, 2014

TARA Biosystems and Harris & Harris Group Form Company to Improve Safety and Efficacy of New Therapies October 22nd, 2014

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Govt.-Legislation/Regulation/Funding/Policy

Brookhaven Lab Launches Computational Science Initiative:Leveraging computational science expertise and investments across the Laboratory to tackle "big data" challenges October 22nd, 2014

Bipolar Disorder Discovery at the Nano Level: Tiny structures found in brain synapses help scientists better understand disorder October 22nd, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Chip Technology

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Nitrogen Doped Graphene Characterized by Iranian, Russian, German Scientists October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Discoveries

Bipolar Disorder Discovery at the Nano Level: Tiny structures found in brain synapses help scientists better understand disorder October 22nd, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Mechanism behind nature's sparkles revealed October 22nd, 2014

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Announcements

NanoTechnology for Defense (NT4D) October 22nd, 2014

Mechanism behind nature's sparkles revealed October 22nd, 2014

TARA Biosystems and Harris & Harris Group Form Company to Improve Safety and Efficacy of New Therapies October 22nd, 2014

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Nanobiotechnology

Mechanism behind nature's sparkles revealed October 22nd, 2014

‘Designer’ nanodevice could improve treatment options for cancer sufferers October 22nd, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Scientists Map Key Moment in Assembly of DNA-Splitting Molecular Machine: Crucial steps and surprising structures revealed in the genesis of the enzyme that divides the DNA double helix during cell replication October 15th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE