Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Heliatek's transparent solar films will enable tinted windows to generate electricity

Transparent solar films will enable building glass to become energy harvesters that smoothly integrate into a building's design.

© Heliatek GmbH
Transparent solar films will enable building glass to become energy harvesters that smoothly integrate into a building's design.

© Heliatek GmbH

Abstract:
Heliatek GmbH, technology leader in the field of organic photovoltaics, has announced that its transparent solar films could be used to be integrated between the glass sheets of double glazed windows. These windows would look like tinted glass as the unique vapor deposition technology for the solar films allows for a homogeneous coating of the solar layer without any distracting patterns or irregularities.

Heliatek's transparent solar films will enable tinted windows to generate electricity

Dresden, Germany | Posted on June 12th, 2012

Heliatek is currently working with glass and other building material manufacturers to include its solar film technology in their products. "Our solar films offer unique and compelling key benefits for all kinds of building integration applications. Thus, our business model is to be the leading supplier of customized solar films to the building and construction material industry. They will integrate our solar films as energy harvesting components into their products," comments Thibaud Le Séguillon, CEO of Heliatek.





The ultra-thin solar films by Heliatek lend themselves perfectly to the integration between glass. The transparency level as well as the color can be tuned to suit the customers' requirements. Measurements by SGS, an accredited and independent testing facility, have confirmed that Heliatek's lab cells still offer an efficiency of 7 % at a light transmission level of 23.5 %. Currently, the company can produce a transparency level of up to 40 % in its laboratories in Dresden, Germany, and sees the possibility to increase this to 50 % when the transparent solar films will be supplied to the building industry with the launch of the next production line in 2014.



SGS had previously confirmed in another measurement campaign the superior low light and high temperature performance of Heliatek's cells compared to traditional solar technologies. At an irradiation of only 100 W/m² the efficiency is 15 % higher compared to the standard efficiency measured at 1,000 W/m². The cell efficiency also remains constant with rising temperatures in contrast to traditional solar technology, which efficiency drops by 15 % to 20 % at elevated temperatures. Dr. Martin Pfeiffer, co-founder and CTO of Heliatek, adds: "Our thin and lightweight solar films can be integrated directly into various kinds of building materials, so there is no need for separate mounting structures. As the film maintains its efficiency at high temperatures, unlike traditional PV technologies, no cooling is required. Similarly, its low light capabilities mean that the orientation and angle of the film is not critical and it maintains its efficiency even when cloudy, north-facing, or in the morning and evening."



Heliatek recently announced a joint development agreement with RECKLI, a world leader in the manufacture of elastic molds for concrete façades, to integrate its solar films onto concrete building walls. This will enable vertical concrete walls to become highly efficient solar energy harvesters without the need for supporting structures or cooling mechanisms. A first concept study of this new application is exhibited by Heliatek at Intersolar EUROPE in Munich, Germany, from June 13 to 15, in hall A6, at the Wirtschaftsförderung Sachsen joint booth no. 160.



Heliatek's organic solar film technology:



The key to Heliatek's success is the family of small organic molecules - oligomers - developed and synthesized at its own lab in Ulm, Germany. Heliatek is the only solar company in the world that uses the deposition of small organic molecules in a low temperature, roll-to-roll vacuum process. Its solar tandem cells are made of nanometers-thin layers of high purity and uniformity. This enables the company to literally engineer the cell architecture to systematically improve efficiency and lifespan. This technology is very similar to the well-established OLED technology (organic LEDs) except that it operates in reverse, taking in light to create electricity. This gives Heliatek access to readily available manufacturing machines, giving it a fast track to reliable, volume production.

####

About Heliatek GmbH
Heliatek was spun-off in 2006 from the Technical University of Dresden (IAPP) and the University of Ulm. The company is the global leader in the development of organic photovoltaics (OPV) based on small molecules and the manufacture of organic solar films. Heliatek maintains a total staff of some 80 specialists at its facilities in Dresden and Ulm, Germany. Investors in Heliatek include leading industrial and financial companies such as BASF, Bosch, RWE, and Wellington Partners. Research and development work, as well as the installation of production technology, has been funded by the Free State of Saxony, the BMBF (Federal Ministry for Education & Research), the BMWi (Federal Ministry of Economics and Technology) and the European Union. Heliatek is currently working on its first roll-to-roll manufacturing line installed in Dresden, Germany, to go in production in the third quarter of 2012. It has also kicked off a third financing round to raise €60 million from current and new investors for a new roll-to-roll 75 MWp production line.

For more information, please click here

Contacts:
Steffanie Rohr
Head of Marketing
Treidlerstraße 3
01139 Dresden, Germany
T (+49-351) 213-034508
F (+49-351) 213-03440
C (+49-173) 359-9693


Nigel Robson
Vortex PR
T (+44-1481) 233080

Copyright © Heliatek GmbH

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Arrowhead Receives Regulatory Clearance to Begin Phase 1/2 Study of ARO-HBV for Treatment of Hepatitis B February 15th, 2018

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-AAT February 15th, 2018

European & Korean Project To Demo World’s First 5G Platform During Winter Games February 15th, 2018

Display technology/LEDs/SS Lighting/OLEDs

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Atomic Flaws Create Surprising, High-Efficiency UV LED Materials: Subtle surface defects increase UV light emission in greener, more cost-effective LED and catalyst materials February 8th, 2018

Liquid crystal molecules form nano rings: Quantized self-assembly enables design of materials with novel properties February 7th, 2018

Nanowire LED Innovator Aledia Announces €30 ($36M) Million Series-C Financing: Intel Capital Joins Existing Investors to Commercialize Certain Nanowire-LED Technologies for Mobile Displays January 29th, 2018

Scientists reveal the fundamental limitation in the key material for solid-state lighting January 25th, 2018

Thin films

A simple new approach to plastic solar cells: Osaka University researchers intelligently design new highly efficient organic solar cells based on amorphous electronic materials with potential for easy printing January 28th, 2018

Scientists reveal the fundamental limitation in the key material for solid-state lighting January 25th, 2018

Particle size matters for porous building blocks: Rice University scientists find porous nanoparticles get tougher under pressure, but not when assembled December 19th, 2017

Announcements

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Arrowhead Receives Regulatory Clearance to Begin Phase 1/2 Study of ARO-HBV for Treatment of Hepatitis B February 15th, 2018

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-AAT February 15th, 2018

European & Korean Project To Demo World’s First 5G Platform During Winter Games February 15th, 2018

Energy

Round-the-clock power from smart bowties February 5th, 2018

Silk fibers could be high-tech ‘natural metamaterials’ January 31st, 2018

A simple new approach to plastic solar cells: Osaka University researchers intelligently design new highly efficient organic solar cells based on amorphous electronic materials with potential for easy printing January 28th, 2018

Nature paper by Schlumberger researchers used photothermal based nanoscale IR spectroscopy to analyze heterogeneous process of petroleum generation January 23rd, 2018

Home

A new product to help combat mouldy walls, thanks to technology developed at the ICN2 December 14th, 2017

Rice lab expands palette for color-changing glass: Nanophotonics team creates low-voltage, multicolor, electrochromic glass March 8th, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Industrial Nanotech, Inc. Announces Plans to Spin Off New Product Line to Major Paint Compan November 9th, 2016

Industrial

Ultra-efficient removal of carbon monoxide using gold nanoparticles on a molecular support: New method and mechanism for state-of-the-art gas purification February 9th, 2018

A simple new approach to plastic solar cells: Osaka University researchers intelligently design new highly efficient organic solar cells based on amorphous electronic materials with potential for easy printing January 28th, 2018

Nature paper by Schlumberger researchers used photothermal based nanoscale IR spectroscopy to analyze heterogeneous process of petroleum generation January 23rd, 2018

New filters could enable manufacturers to perform highly-selective chemical separation January 23rd, 2018

Solar/Photovoltaic

A simple new approach to plastic solar cells: Osaka University researchers intelligently design new highly efficient organic solar cells based on amorphous electronic materials with potential for easy printing January 28th, 2018

Tweaking quantum dots powers-up double-pane solar windows: Engineered quantum dots could bring down the cost of solar electricity January 2nd, 2018

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Inorganic-organic halide perovskites for new photovoltaic technology November 6th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project