Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanoparticles found in moon glass bubbles explain weird lunar soil behaviour

Dr Marek Zbik
Dr Marek Zbik

Abstract:
A stunning discovery by QUT soil scientist Marek Zbik of nano particles inside bubbles of glass in lunar soil could solve the mystery of why the moon's surface topsoil has many unusual properties.



You can see what is inside the lunar bubble with 3D glasses.

Nanoparticles found in moon glass bubbles explain weird lunar soil behaviour

Brisbane, Australia | Posted on June 12th, 2012

Dr Zbik, from Queensland University of Technology's Science and Engineering Faculty, said scientists had long observed the strange behaviour of lunar soil but had not taken much notice of the nano and submicron particles found in the soil and their source was unknown.

Dr Zbik took the lunar soil samples to Taiwan where he could study the glass bubbles without breaking them using a new technique for studying nano materials call synchrotron-based nano tomography to look at the particles. Nano tomography is a transmission X-ray microscope which enables 3D images of nano particles to be made.

"We were really surprised at what we found," Dr Zbik said.

"Instead of gas or vapour inside the bubbles, which we would expect to find in such bubbles on Earth, the lunar glass bubbles were filled with a highly porous network of alien-looking glassy particles that span the bubbles' interior.

"It appears that the nano particles are formed inside bubbles of molten rocks when meteorites hit the lunar surface. Then they are released when the glass bubbles are pulverised by the consequent bombardment of meteorites on the moon's surface.

"This continuous pulverising of rocks on the lunar surface and constant mixing develop a type of soil which is unknown on Earth."

Dr Zbik said nano particles behaved according to the laws of quantum physics which were completely different from so called 'normal' physics' laws. Because of this, materials containing nano particles behave strangely according to our current understanding.

"Nano particles are so tiny, it is their size and not what they are made of that accounts for their exceptional properties.

"We don't understand a lot about quantum physics yet but it could be that these nano particles, when liberated from their glass bubble, mix with the other soil constituents and give lunar soil its unusual properties.

"Lunar soil is electro-statically charged so it hovers above the surface; it is extremely chemically active; and it has low thermal conductivity eg it can be 160 degrees above the surface but -40 degrees two metres below the surface.

"It is also very sticky and brittle such that its particles wear the surface off metal and glass."

Dr Zbik said the moon had no atmosphere to cushion the impact of meteorites like Earth had.

"When they hit the moon there is a very violent reaction. Huge temperatures are generated which melts the rock. The pressure goes and a vacuum is created. Bubbles occur in the molten glass rock like soft drink bubbles trying to escape the bottle.

"Our work now is to understand how those particles evolve from this process. It may also lead us to completely different way of manufacturing nanomaterials."

Dr Zbik and his research team's study was published in the International Scholarly Research Network Astronomy and Astrophysics.

####

About Queensland University of Technology
Queensland University of Technology (QUT) is a highly successful Australian university with an applied emphasis in courses and research. Based in Brisbane with a global outlook, it has 40,000 students, including 6000 from overseas (QUT Statistics), and an annual budget of more than AU$500 million.

For more information, please click here

Contacts:
Niki Widdowson
QUT media officer
61 07 3138 2999

Copyright © Queensland University of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Graphene Shows Promise In Eradication Of Stem Cancer Cells March 1st, 2015

Novel Method to Determine Optical Purity of Drug Components March 1st, 2015

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Videos/Movies

Maximum Precision in 3D Printing: New complete solution makes additive manufacturing standard for microfabrication February 26th, 2015

Simulating superconducting materials with ultracold atoms: Rice physicists build superconductor analog, observe antiferromagnetic order February 23rd, 2015

Waterloo invention advances quantum computing research: New device, which will be used in labs around the world to develop quantum technologies, produces fragile entangled photons in a more efficient way February 16th, 2015

Los Alamos Develops New Technique for Growing High-Efficiency Perovskite Solar Cells: Researchers’ crystal-production insights resolve manufacturing difficulty January 29th, 2015

Discoveries

Graphene Shows Promise In Eradication Of Stem Cancer Cells March 1st, 2015

Novel Method to Determine Optical Purity of Drug Components March 1st, 2015

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Announcements

Graphene Shows Promise In Eradication Of Stem Cancer Cells March 1st, 2015

Novel Method to Determine Optical Purity of Drug Components March 1st, 2015

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Aerospace/Space

National Space Society and Space Frontier Foundation announce the formation of the Alliance for Space Development February 25th, 2015

Rosetta Team Wins the National Space Society's Science and Engineering Space Pioneer Award February 23rd, 2015

A new spin on spintronics: Michigan team tests radiation-resistant spintronic material, possibly enabling electronic devices that will work in harsh environments February 17th, 2015

Mars Science Laboratory (Curiosity) Rover and Science Team Wins the National Space Society's von Braun Award February 13th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE