Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Imec and Kaneka Achieve Breakthrough in Developing Next-Generation Heterojunction Solar Cells

Abstract:
Kaneka and imec report a large area (6 inch semi-square) heterojunction silicon solar cell with a certified power conversion efficiency of 22.68%(*) with an electroplated copper contact grid on top of the transparent conductive oxide layer. This breakthrough is achieved at Kaneka Osaka lab using Kaneka's copper electroplating technology which is based on imec's state-of-the-art copper electroplating know how.

Imec and Kaneka Achieve Breakthrough in Developing Next-Generation Heterojunction Solar Cells

Tokyo, Japan | Posted on June 12th, 2012

To realize the top grid electrode in heterojunction silicon solar cells, silver screen printing is the preferred technology in the PV (photovoltaic) industry. However, a drawback of this technology is the difficulty to lower resistivity and to thin the metal line in silver screen printed contacts. As a result, efficiencies remain below optimal and cost remains relatively high. Replacing the screen-printed silver with electroplated copper overcomes the disadvantages of silver screen printing, enabling higher efficiencies and reduced fabrication costs.

Kaneka's Photovoltaics European Laboratory is located at the imec campus in Leuven (Belgium), with access to imec's state-of-the-art PV infrastructure. The collaboration between Kaneka and imec has led to the improvement of Kaneka's thin-film solar cells and the development of next-generation heterojunction cells. This development of large area Cu-plated heterojunction silicon solar cells is an important step towards a fab-compatible process on large area module integrated solar cells.

Kenji Yamamoto, General Manager of Kaneka's Photovoltaics European Laboratory says that "Kaneka is proud to have achieved this result which was made possible through the initial developments made by imec."

Jef Poortmans, Director PV technologies at imec: "We are excited that we could support Kaneka in developing this breakthrough results. They prove the capabilities of copper metallization for next-generation solar cells and strengthen our believe that in the future copper will play an important role in high efficiency and sustainable solar cell technology."

(*) Certified by Fraunhofer ISE CalLab

####

About IMEC
Imec performs world-leading research in nanoelectronics. Imec leverages its scientific knowledge with the innovative power of its global partnerships in ICT, healthcare and energy. Imec delivers industry-relevant technology solutions. In a unique high-tech environment, its international top talent is committed to providing the building blocks for a better life in a sustainable society. Imec is headquartered in Leuven, Belgium, and has offices in Belgium, the Netherlands, Taiwan, US, China, India and Japan. Its staff of close to 2,000 people includes more than 600 industrial residents and guest researchers. In 2011, imec's revenue (P&L) was about 300 million euro. Further information on imec can be found at www.imec.be.

Imec is a registered trademark for the activities of IMEC International (a legal entity set up under Belgian law as a "stichting van openbaar nut”), imec Belgium (IMEC vzw supported by the Flemish Government), imec the Netherlands (Stichting IMEC Nederland, part of Holst Centre which is supported by the Dutch Government), imec Taiwan (IMEC Taiwan Co.) and imec China (IMEC Microelectronics (Shangai) Co. Ltd.) and imec India (Imec India Private Limited).

About Kaneka

Kaneka Corporation was established in 1949 as a spin-off from the Kanegafuchi Spinning Co., Ltd. It is headquartered in Osaka, Japan and employs about 7,300 people worldwide (including consolidated subsidiaries). Kaneka’s activities span a broad spectrum of markets ranging from photovoltaics, plastics, EPS resins, chemicals and foodstuffs to pharmaceuticals, medical devices, electrical and electronic materials and synthetic fibers. Kaneka has subsidiaries in Belgium, the United States, Singapore, Malaysia, China, Australia and Vietnam.

Further information on Kaneka can be found at www.kaneka.co.jp/kaneka-e/

For more information, please click here

Contacts:
Contact imec

Katrien Marent
Director of External Communications
T: +32 16 28 18 80
Mobile : +32 474 30 28 66

or
Hanne Degans
External Communications Officer
T: +32 16 28 17 69
Mobile: +32 486 065 175


Kaneka:
Public Relations Office
Manger
Yoshito Miyakawa
+81 66226 5019
Olga Walsh
Business Technology
[ f o r m u l a ]
Formula PR, Inc.
1215 Cushman Avenue
San Diego, CA 92110
Office 619-234-0345

Copyright © IMEC

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Discoveries

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Plasmon-powered upconversion nanocrystals for enhanced bioimaging and polarized emission: Plasmonic gold nanorods brighten lanthanide-doped upconversion superdots for improved multiphoton bioimaging contrast and enable polarization-selective nonlinear emissions for novel nanoscal May 19th, 2017

Announcements

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Energy

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Fed grant backs nanofiber development: Rice University joins Department of Energy 'Next Generation Machines' initiative May 10th, 2017

Discovery of new transparent thin film material could improve electronics and solar cells: Conductivity is highest-ever for thin film oxide semiconductor material May 6th, 2017

CCNY physicists demonstrate photonic hypercrystals for control of light-matter interaction May 5th, 2017

Research partnerships

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Gas gives laser-induced graphene super properties: Rice University study shows inexpensive material can be superhydrophilic or superhydrophobic May 15th, 2017

Solar/Photovoltaic

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Fed grant backs nanofiber development: Rice University joins Department of Energy 'Next Generation Machines' initiative May 10th, 2017

Discovery of new transparent thin film material could improve electronics and solar cells: Conductivity is highest-ever for thin film oxide semiconductor material May 6th, 2017

SUNY Polytechnic Institute Announces Total of 172 Teams Selected to Compete in Solar in Your Community Challenge: Teams from 40 states, plus Washington, DC, 2 Territories, and 4 American Indian Reservations, Will Deploy Solar in Underserved Communities April 20th, 2017

Printing/Lithography/Inkjet/Inks/Bio-printing

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

New stem cell technique shows promise for bone repair January 25th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanowire 'inks' enable paper-based printable electronics: Highly conductive films make functional circuits without adding high heat January 4th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project