Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Researchers watch tiny living machines self-assemble

Vallée-Bélisle and Michnick have developed a new approach to visualize how proteins assemble, which may also significantly aid our understanding of diseases such as Alzheimer’s and Parkinson’s, which are caused by errors in assembly. Here shown are two different assembly stages (purple and red) of the protein ubiquitin and the fluorescent probe used to visualize these stage (tryptophan: see yellow). Credit: Peter Allen. Print resolution available on request.
Vallée-Bélisle and Michnick have developed a new approach to visualize how proteins assemble, which may also significantly aid our understanding of diseases such as Alzheimer’s and Parkinson’s, which are caused by errors in assembly. Here shown are two different assembly stages (purple and red) of the protein ubiquitin and the fluorescent probe used to visualize these stage (tryptophan: see yellow).

Credit: Peter Allen. Print resolution available on request.

Abstract:
Enabling bioengineers to design new molecular machines for nanotechnology applications is one of the possible outcomes of a study by University of Montreal researchers that was published in Nature Structural and Molecular Biology today. The scientists have developed a new approach to visualize how proteins assemble, which may also significantly aid our understanding of diseases such as Alzheimer's and Parkinson's, which are caused by errors in assembly.

Researchers watch tiny living machines self-assemble

Montréal, Canada | Posted on June 10th, 2012

"In order to survive, all creatures, from bacteria to humans, monitor and transform their environments using small protein nanomachines made of thousands of atoms," explained the senior author of the study, Prof. Stephen Michnick of the university's department of biochemistry. "For example, in our sinuses, there are complex receptor proteins that are activated in the presence of different odor molecules. Some of those scents warn us of danger; others tell us that food is nearby." Proteins are made of long linear chains of amino acids, which have evolved over millions of years to self-assemble extremely rapidly - often within thousandths of a split second - into a working nanomachine. "One of the main challenges for biochemists is to understand how these linear chains assemble into their correct structure given an astronomically large number of other possible forms," Michnick said.

"To understand how a protein goes from a linear chain to a unique assembled structure, we need to capture snapshots of its shape at each stage of assembly said Dr. Alexis Vallée-Bélisle, first author of the study. "The problem is that each step exists for a fleetingly short time and no available technique enables us to obtain precise structural information on these states within such a small time frame. We developed a strategy to monitor protein assembly by integrating fluorescent probes throughout the linear protein chain so that we could detect the structure of each stage of protein assembly, step by step to its final structure." The protein assembly process is not the end of its journey, as a protein can change, through chemical modifications or with age, to take on different forms and functions. "Understanding how a protein goes from being one thing to becoming another is the first step towards understanding and designing protein nanomachines for biotechnologies such as medical and environmental diagnostic sensors, drug synthesis of delivery," Vallée-Bélisle said.

This research was supported by the Natural Sciences and Engineering Research Council of Canada and Le fond de recherché du Québec, Nature et Technologie. The article, "Visualizing transient protein folding intermediates by tryptophan scanning mutagenesis," published in Nature Structural & Molecular Biology, was coauthored by Alexis Vallée-Bélisle and Stephen W. Michnick of the Département de Biochimie de l'Université de Montréal. The University of Montreal is known officially as Université de Montréal.

Full bibliographic information"Visualizing transient protein-folding intermediates by tryptophan-scanning mutagenesis" by Michnick has been scheduled for Advance Online Publication (AOP) on Nature Structural & Molecular Biology's website on 10 June at 1800 London time / 1300 US Eastern time, which is when the embargo will lift. If you wish to see the paper, the author(s) should be able to provide you with a copy.

The full listing of authors and their affiliations for this paper is as follows:

Alexis Vallée-Bélisle1,3 & Stephen W Michnick1,2

1Département de Biochimie, Université de Montréal, Montréal, Québec, Canada.

2Centre Robert-Cedergren en Bio-Informatique et Génomique, Université de Montréal, Montréal, Québec, Canada.

3Present address: Department of Chemistry and Biochemistry, University of California, Santa Barbara, California, USA.

####

About Université de Montréal
Deeply rooted in Montreal and dedicated to its international mission, the Université de Montréal (University of Montreal) is one of the top universities in the French-speaking world. Founded in 1878, the University today has 16 faculties and together with its two affiliated schools, HEC Montréal and École Polytechnique, constitutes the largest centre of higher education and research in Québec, the second largest in Canada, and one of the major centres in North America. It brings together 2,500 professors and researchers, accommodates more than 60,000 students, offers some 650 programs at all academic levels, and awards about 3,000 masters and doctorate diplomas each year.

For more information, please click here

Contacts:
William Raillant-Clark
514-343-7593

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

TCL Unveils First 65” TV Featuring QD Vision’s Color IQ™ Quantum Dot Technology: Emerging industry leader introduces expanded quantum dot TV lineup May 30th, 2015

Nanotech Secures Additional Patents in Advanced Security Features: New patented features gain attention from the banknote industry May 30th, 2015

New 'designer carbon' from Stanford boosts battery performance May 30th, 2015

Two UCSB Professors Receive Early Career Research Awards: The Department of Energy’s award for young scientists acknowledges UC Santa Barbara’s standing as a top tier research institution May 29th, 2015

Molecular Machines

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

UCLA nanoscientists are first to model atomic structures of three bacterial nanomachines: Cryo electron microscope enables scientists to explore the frontiers of targeted antibiotics April 21st, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Molecular Nanotechnology

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

Feynman Prize Winners Announced! April 26th, 2015

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

Self Assembly

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Scientists Use Nanoscale Building Blocks and DNA 'Glue' to Shape 3D Superlattices: New approach to designing ordered composite materials for possible energy applications April 23rd, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Carnegie Mellon chemists create tiny gold nanoparticles that reflect nature's patterns April 9th, 2015

Nanomedicine

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

New electronic stent could provide feedback and therapy — then dissolve May 27th, 2015

Arrowhead to Present at Jefferies 2015 Healthcare Conference May 27th, 2015

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study May 27th, 2015

Discoveries

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project