Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers watch tiny living machines self-assemble

Vallée-Bélisle and Michnick have developed a new approach to visualize how proteins assemble, which may also significantly aid our understanding of diseases such as Alzheimer’s and Parkinson’s, which are caused by errors in assembly. Here shown are two different assembly stages (purple and red) of the protein ubiquitin and the fluorescent probe used to visualize these stage (tryptophan: see yellow). Credit: Peter Allen. Print resolution available on request.
Vallée-Bélisle and Michnick have developed a new approach to visualize how proteins assemble, which may also significantly aid our understanding of diseases such as Alzheimer’s and Parkinson’s, which are caused by errors in assembly. Here shown are two different assembly stages (purple and red) of the protein ubiquitin and the fluorescent probe used to visualize these stage (tryptophan: see yellow).

Credit: Peter Allen. Print resolution available on request.

Abstract:
Enabling bioengineers to design new molecular machines for nanotechnology applications is one of the possible outcomes of a study by University of Montreal researchers that was published in Nature Structural and Molecular Biology today. The scientists have developed a new approach to visualize how proteins assemble, which may also significantly aid our understanding of diseases such as Alzheimer's and Parkinson's, which are caused by errors in assembly.

Researchers watch tiny living machines self-assemble

Montréal, Canada | Posted on June 10th, 2012

"In order to survive, all creatures, from bacteria to humans, monitor and transform their environments using small protein nanomachines made of thousands of atoms," explained the senior author of the study, Prof. Stephen Michnick of the university's department of biochemistry. "For example, in our sinuses, there are complex receptor proteins that are activated in the presence of different odor molecules. Some of those scents warn us of danger; others tell us that food is nearby." Proteins are made of long linear chains of amino acids, which have evolved over millions of years to self-assemble extremely rapidly - often within thousandths of a split second - into a working nanomachine. "One of the main challenges for biochemists is to understand how these linear chains assemble into their correct structure given an astronomically large number of other possible forms," Michnick said.

"To understand how a protein goes from a linear chain to a unique assembled structure, we need to capture snapshots of its shape at each stage of assembly said Dr. Alexis Vallée-Bélisle, first author of the study. "The problem is that each step exists for a fleetingly short time and no available technique enables us to obtain precise structural information on these states within such a small time frame. We developed a strategy to monitor protein assembly by integrating fluorescent probes throughout the linear protein chain so that we could detect the structure of each stage of protein assembly, step by step to its final structure." The protein assembly process is not the end of its journey, as a protein can change, through chemical modifications or with age, to take on different forms and functions. "Understanding how a protein goes from being one thing to becoming another is the first step towards understanding and designing protein nanomachines for biotechnologies such as medical and environmental diagnostic sensors, drug synthesis of delivery," Vallée-Bélisle said.

This research was supported by the Natural Sciences and Engineering Research Council of Canada and Le fond de recherché du Québec, Nature et Technologie. The article, "Visualizing transient protein folding intermediates by tryptophan scanning mutagenesis," published in Nature Structural & Molecular Biology, was coauthored by Alexis Vallée-Bélisle and Stephen W. Michnick of the Département de Biochimie de l'Université de Montréal. The University of Montreal is known officially as Université de Montréal.

Full bibliographic information"Visualizing transient protein-folding intermediates by tryptophan-scanning mutagenesis" by Michnick has been scheduled for Advance Online Publication (AOP) on Nature Structural & Molecular Biology's website on 10 June at 1800 London time / 1300 US Eastern time, which is when the embargo will lift. If you wish to see the paper, the author(s) should be able to provide you with a copy.

The full listing of authors and their affiliations for this paper is as follows:

Alexis Vallée-Bélisle1,3 & Stephen W Michnick1,2

1Département de Biochimie, Université de Montréal, Montréal, Québec, Canada.

2Centre Robert-Cedergren en Bio-Informatique et Génomique, Université de Montréal, Montréal, Québec, Canada.

3Present address: Department of Chemistry and Biochemistry, University of California, Santa Barbara, California, USA.

####

About Université de Montréal
Deeply rooted in Montreal and dedicated to its international mission, the Université de Montréal (University of Montreal) is one of the top universities in the French-speaking world. Founded in 1878, the University today has 16 faculties and together with its two affiliated schools, HEC Montréal and École Polytechnique, constitutes the largest centre of higher education and research in Québec, the second largest in Canada, and one of the major centres in North America. It brings together 2,500 professors and researchers, accommodates more than 60,000 students, offers some 650 programs at all academic levels, and awards about 3,000 masters and doctorate diplomas each year.

For more information, please click here

Contacts:
William Raillant-Clark
514-343-7593

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

NUS researchers invent new test kit for quick, accurate and low-cost screening of diseases: Test results are denoted by a color change and could be further analyzed by a smartphone app, making it attractive as a point-of-care diagnostic device September 19th, 2018

Silver nanoparticles are toxic for aquatic organisms: A research team at the UPV/EHU-University of the Basque Country has analysed how zebrafish are affected in the long term by exposure to silver particles September 19th, 2018

Leti Announces EU Project to Develop Powerful, Inexpensive Sensors with Photonic Integrated Circuits: REDFINCH Members Initially Targeting Applications for Gas Detection and Analysis For Refineries & Petrochemical Industry and Protein Analysis for Dairy Industry September 19th, 2018

Researchers develop microbubble scrubber to destroy dangerous biofilms September 19th, 2018

Molecular Machines

Measuring the nanoworld September 4th, 2018

All wired up: New molecular wires for single-molecule electronic devices August 31st, 2018

Nanotubes change the shape of water: Rice University engineers show how water molecules square up in nanotubes HOUSTON August 24th, 2018

Biophysics -- lighting up DNA-based nanostructures April 25th, 2018

Molecular Nanotechnology

Measuring the nanoworld September 4th, 2018

All wired up: New molecular wires for single-molecule electronic devices August 31st, 2018

Nanotubes change the shape of water: Rice University engineers show how water molecules square up in nanotubes HOUSTON August 24th, 2018

A molecular switch at the edge of graphene July 27th, 2018

Self Assembly

DNA drives design principles for lighter, thinner optical displays: Lighter gold nanoparticles could replace thicker, heavier layered polymers used in displays’ back-reflectors June 27th, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Self-assembling 3D battery would charge in seconds May 22nd, 2018

Engineered polymer membranes could be new option for water treatment May 6th, 2018

Nanomedicine

NUS researchers invent new test kit for quick, accurate and low-cost screening of diseases: Test results are denoted by a color change and could be further analyzed by a smartphone app, making it attractive as a point-of-care diagnostic device September 19th, 2018

Researchers develop microbubble scrubber to destroy dangerous biofilms September 19th, 2018

Halas wins American Chemical Society Award in Colloid Chemistry: Rice University nanophotonics pioneer honored for colloid research September 18th, 2018

A Comprehensive Guide: The Future of Nanotechnology September 13th, 2018

Discoveries

NUS researchers invent new test kit for quick, accurate and low-cost screening of diseases: Test results are denoted by a color change and could be further analyzed by a smartphone app, making it attractive as a point-of-care diagnostic device September 19th, 2018

Silver nanoparticles are toxic for aquatic organisms: A research team at the UPV/EHU-University of the Basque Country has analysed how zebrafish are affected in the long term by exposure to silver particles September 19th, 2018

Researchers develop microbubble scrubber to destroy dangerous biofilms September 19th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project