Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > 'Nanocable' could be big boon for energy storage: Rice University's coaxial nanocable outperforms previous microcapacitors

An artist's impression of Rice University's new coaxial nanocable, which is about a thousand times smaller than a human hair.
CREDIT: Zheng Liu/Rice University
An artist's impression of Rice University's new coaxial nanocable, which is about a thousand times smaller than a human hair.

CREDIT: Zheng Liu/Rice University

Abstract:
Thanks to a little serendipity, researchers at Rice University have created a tiny coaxial cable that is about a thousand times smaller than a human hair and has higher capacitance than previously reported microcapacitors.

'Nanocable' could be big boon for energy storage: Rice University's coaxial nanocable outperforms previous microcapacitors

Houston, TX | Posted on June 7th, 2012

The nanocable, which is described this week in Nature Communications, was produced with techniques pioneered in the nascent graphene research field and could be used to build next-generation energy-storage systems. It could also find use in wiring up components of lab-on-a-chip processors, but its discovery is owed partly to chance.

"We didn't expect to create this when we started," said study co-author Jun Lou, associate professor of mechanical engineering and materials science at Rice. "At the outset, we were just curious to see what would happen electrically and mechanically if we took small copper wires known as interconnects and covered them with a thin layer of carbon."

The tiny coaxial cable is remarkably similar in makeup to the ones that carry cable television signals into millions of homes and offices. The heart of the cable is a solid copper wire that is surrounded by a thin sheath of insulating copper oxide. A third layer, another conductor, surrounds that. In the case of TV cables, the third layer is copper again, but in the nanocable it is a thin layer of carbon measuring just a few atoms thick. The coax nanocable is about 100 nanometers, or 100 billionths of a meter, wide.

While the coaxial cable is a mainstay of broadband telecommunications, the three-layer, metal-insulator-metal structure can also be used to build energy-storage devices called capacitors. Unlike batteries, which rely on chemical reactions to both store and supply electricity, capacitors use electrical fields. A capacitor contains two electrical conductors, one negative and the other positive, that are separated by thin layer of insulation. Separating the oppositely charged conductors creates an electrical potential, and that potential increases as the separated charges increase and as the distance between them - occupied by the insulating layer -- decreases. The proportion between the charge density and the separating distance is known as capacitance, and it's the standard measure of efficiency of a capacitor.

The study reports that the capacitance of the nanocable is at least 10 times greater than what would be predicted with classical electrostatics.

"The increase is most likely due to quantum effects that arise because of the small size of the cable," said study co-author Pulickel Ajayan, Rice's Benjamin M. and Mary Greenwood Anderson Professor of Mechanical Engineering and Materials Science.

Lou's and Ajayan's laboratories each specialize in fabricating and studying nanoscale materials and nanodevices that exhibit these types of intriguing quantum effects, but Ajayan and Lou said there was an element of chance to the nanocable discovery.

When the project began 18 months ago, Rice postdoctoral researcher Zheng Liu, the lead co-author of the study, intended to make pure copper wires covered with carbon. The techniques for making the wires, which are just a few nanometers wide, are well-established because the wires are often used as "interconnects" in state-of-the-art electronics. Liu used a technique known as chemical vapor deposition (CVD) to cover the wires with a thin coating of carbon. The CVD technique is also used to grow sheets of single-atom-thick carbon called graphene on films of copper.

"When people make graphene, they usually want to study the graphene and they aren't very interested in the copper," Lou said. "It's just used a platform for making the graphene."

When Liu ran some electronic tests on his first few samples, the results were far from what he expected.

"We eventually found that a thin layer of copper oxide -- which is served as a dielectric layer -- was forming between the copper and the carbon," said Liu.

Upon examining other studies more closely, the team found that a few other scientists had made mention of oxidation occurring on the copper substrates during graphene production.

"It's fairly well-documented, but we couldn't find anyone who'd done a detailed examination of the electronic properties of such complex interfaces," Ajayan said.

The capacitance of the new nanocable is up to 143 microfarads per centimeter squared, better than the best previous results from microcapacitors.

Lou said it may be possible to build a large-scale energy-storage device by arranging millions of the tiny nanocables side by side in large arrays.

"The nanoscale cable might also be used as a transmission line for radio frequency signals at the nanoscale," Liu said. "This could be useful as a fundamental building block in micro- and nano-sized electromechanical systems like lab-on-a-chip devices."

The research was funded by the National Science Foundation, Rice University, the Office of Naval Research, the Welch Foundation, the Center for Exotic NanoCarbons at Shinshu University and the Japan Regional Innovation Strategy Program by the Excellence.

Co-authors include Lou, Ajayan, Liu, Yongjie Zhan, Gang Shi, Lulu Ma, Wei Gao and Robert Vajtai, all of Rice University; Pradeep Sharma and Mohamed Gharbi of the University of Houston; Simona Moldovan and Florian Banhart, both of Institut de Physique et Chimie des Matériaux in Strasbourg, France; Li Song of Shinshu University in Nagano, Japan; and Jiaqi Huang, formerly of Rice and currently at Tsinghua University in Beijing.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is known for its "unconventional wisdom." With 3,708 undergraduates and 2,374 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 4 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to www.rice.edu/nationalmedia/Rice.pdf.

For more information, please click here

Contacts:
David Ruth
713-348-6327


Jade Boyd
713-348-6778

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

A copy of the Nature Communications paper is available at:

Related News Press

News and information

Study finds long-term survival of human neural stem cells transplanted into primate brain April 23rd, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Guo Lab Shows Potential of RNA as Heat-resistant Polymer Material for Nanoarchitectures April 23rd, 2014

Graphene

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Nanomaterial Outsmarts Ions April 22nd, 2014

Lab-on-a-chip

Waterloo, Technion Partner to Advance Research, Commercialization March 19th, 2014

In vitro innovation: Testing nanomedicine with blood cells on a microchip February 4th, 2014

Researchers model macroscale plasmonic convection to control fluid and particle motion January 22nd, 2014

SiMPore Collaboration Leads to Development of Novel Chip-Sized Pump November 7th, 2013

NEMS

LetiDays Grenoble to Present Multiple Perspectives on Development, Challenges and Markets for the IoT April 14th, 2014

Columbia engineers make world's smallest FM radio transmitter: Team demonstrates new application of graphene using positive feedback November 18th, 2013

Revisiting quantum effects in MEMS: New calculations shows that the influence of quantum effects on the operating conditions of nanodevices has, until now, been overestimated November 15th, 2013

Leti Workshop at IEDM 2013 Will Present Latest Advances in Cost-effective and Power-efficient Technologies for the Future of the Semiconductor Industry November 6th, 2013

Govt.-Legislation/Regulation/Funding/Policy

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Guo Lab Shows Potential of RNA as Heat-resistant Polymer Material for Nanoarchitectures April 23rd, 2014

Cloaked DNA nanodevices survive pilot mission: Successful foray opens door to virus-like DNA nanodevices that could diagnose diseased tissues and manufacture drugs to treat them April 22nd, 2014

Berkeley Lab Researchers Demonstrate First Size-based Chromatography Technique for the Study of Living Cells April 22nd, 2014

MEMS

LetiDays Grenoble to Present Multiple Perspectives on Development, Challenges and Markets for the IoT April 14th, 2014

Rainbow-catching waveguide could revolutionize energy technologies: By slowing and absorbing certain wavelengths of light, engineers open new possibilities in solar power, thermal energy recycling and stealth technology March 28th, 2014

Micro systems with big commercial potential featured in SPIE journal: Special section in Journal of Micro/Nanolithography, MEMS, and MOEMS highlights emerging MOEMS technologies March 25th, 2014

Martini Tech Inc. Starts to Offer GaN Deposition Service by MOCVD March 25th, 2014

Discoveries

Study finds long-term survival of human neural stem cells transplanted into primate brain April 23rd, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Guo Lab Shows Potential of RNA as Heat-resistant Polymer Material for Nanoarchitectures April 23rd, 2014

Berkeley Lab Researchers Demonstrate First Size-based Chromatography Technique for the Study of Living Cells April 22nd, 2014

Announcements

Study finds long-term survival of human neural stem cells transplanted into primate brain April 23rd, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Guo Lab Shows Potential of RNA as Heat-resistant Polymer Material for Nanoarchitectures April 23rd, 2014

National Space Society Congratulates SpaceX on the Success of CRS-3 and the First Flight of the Falcon 9R April 22nd, 2014

Military

Cloaked DNA nanodevices survive pilot mission: Successful foray opens door to virus-like DNA nanodevices that could diagnose diseased tissues and manufacture drugs to treat them April 22nd, 2014

'Exotic' material is like a switch when super thin April 18th, 2014

Tiny particles could help verify goods: Chemical engineers hope smartphone-readable microparticles could crack down on counterfeiting April 15th, 2014

Targeting cancer with a triple threat: MIT chemists design nanoparticles that can deliver three cancer drugs at a time April 15th, 2014

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

Relieving electric vehicle range anxiety with improved batteries: Lithium-sulfur batteries last longer with nanomaterial-packed cathode April 16th, 2014

Catching the (Invisible) Wave: UC Santa Barbara researchers create a unique semiconductor that manipulates light in the invisible infrared/terahertz range, paving the way for new and enhanced applications April 11th, 2014

Research partnerships

University of Waterloo Visits China to Strengthen Bonds With Research Partners April 21st, 2014

Novel stapled peptide nanoparticle combination prevents RSV infection, study finds April 17th, 2014

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

Scalable CVD process for making 2-D molybdenum diselenide: Rice, NTU scientists unveil CVD production for coveted 2-D semiconductor April 8th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE