Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers love triangles: Shaped catalysts spark longer, faster-growing, rule-breaking nanowires

Abstract:
A research team at Case Western Reserve University has found that gold catalysts shaped in the form of a cube, triangle, or other higher order structures grow nanowires about twice as fast and twice as long compared to wires grown with the more typical spherically-shaped catalysts.

Researchers love triangles: Shaped catalysts spark longer, faster-growing, rule-breaking nanowires

Cleveland, OH | Posted on June 6th, 2012

This finding could prove useful to other scientists who are growing nanowires to build sensors fast enough to detect changes in red and white blood cells. These sensors in turn could help identify various forms of cancer in the body. The wires are so small - as small as one-5,000th the width of a human hair - they could also be used to build the next generation of "invisible" computer chips.

Xuan Gao, assistant professor of physics, and R. Mohan Sankaran, associate professor of chemical engineering, describe their work in the paper, "Shape-Controlled Au Particles for InAs Nanowire Growth," published in the journal Nano Letters.

Their research team included Case Western Reserve graduate students Pin Ann Lin and Dong Liang and Hathaway Brown Upper School student Samantha Reeves.

The researchers tested growth using both the preferentially-shaped and spherical catalysts under identical conditions to rule out error in the comparisons.

They suggest that the long accepted model of vapor-liquid-solid, or VLS, growth is incomplete, and that more tests are needed in order to fully understand the process.

Here's why: the researchers found that that the nanowires grown with the triangular catalyst have a much thicker layer of the metal Indium than the VLS nanowire growth model predicts.

The finding suggests a correlation between Indium concentration and growth enhancement. The team made the discovery when they beamed electrons at the nanowires to release high energy x-rays, a process called energy-dispersive X-ray spectroscopy. The magnitude of these energy bursts were used to determine chemical properties of the nanowires.

To grow nanowires, the researchers combined elements such as indium and arsenic, from rows 4 and 5 of the periodic table of elements. Elements from these rows bond to the gold particle to create a semiconductor that neither allows great flow of electric current nor greatly prevents its flow. This is called the "bottom-up method" which Gao describes as truly like "growing a plant from a seed."

Nanowires can also be made "top-down" with precise cuts on a large piece of semiconducting material, reducing it to a tiny structure of wires.

The disadvantage to this, Sankaran explains, is that cutting wires smaller than around 45 nm, which is the current standard in computer chips, "is impossible if we are using a machine. But if we were to grow the wires from chemical compounds we could make them as small as 10 nm, meaning we could fit more wires in a smaller space for greater speed."

However the bottom-up method only produces wires in bunches as opposed to the large interwoven structures made from the top-down method of cutting. The challenge is combining chemically-grown wires in ways that they work in complex electronics such as computer chips or highly-sensitive sensors.

Both Gao and Sankaran describe their research efforts as truly collaborative. Sankaran makes catalysts of different shapes to grow the nanowires, and Gao tests the properties of these wires and connects them to possible uses in the field.

This duo plans to continue exploring the correlation between catalyst shape and other structural characteristics of the wires in order to further develop the VLS model, and move closer to implementing nanowires in new technology.

Release prepared by Sean Linden, an undergraduate student at Case Western Reserve.

####

For more information, please click here

Contacts:
Kevin Mayhood

216-368-4442

Copyright © Case Western Reserve University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Novel nanoparticle-based approach detects and treats oral plaque without drugs August 17th, 2018

UVA multidisciplinary engineering team designs technology for smart materials: The invention could lead to devices and manufactured goods, such as fabrics, that can dynamically regulate between thermally insulating and cooling August 17th, 2018

Smallest transistor worldwide switches current with a single atom in solid electrolyte: Milestone of energy efficiency in information technology -- Publication in Advanced Materials August 17th, 2018

Scientists turn to the quantum realm to improve energy transportation August 17th, 2018

Chip Technology

Smallest transistor worldwide switches current with a single atom in solid electrolyte: Milestone of energy efficiency in information technology -- Publication in Advanced Materials August 17th, 2018

Scientists create antilaser for ultracold atoms condensate August 16th, 2018

Flipping the switch on supramolecular electronics August 14th, 2018

Breaking down the Wiedemann-Franz law: In a study exploring the coupling between heat and particle currents in a gas of strongly interacting atoms, physicists at ETH Zurich find puzzling behaviours August 10th, 2018

Nanomedicine

Novel nanoparticle-based approach detects and treats oral plaque without drugs August 17th, 2018

Research brief: UMN researchers use green gold to rapidly detect and identify harmful bacteria August 15th, 2018

New technology can detect hundreds of proteins in a single sample: Improvement of barcoding technique offers cost-effective alternative to current technology August 13th, 2018

Scientists squeeze nanocrystals in a liquid droplet into a solid-like state and back again: Simple chemical technique transforms crystal mixture where 2 liquids meet August 9th, 2018

Sensors

CTI Materials drives nano commercialization with it's patented surfactant free nanoparticle dispersions August 15th, 2018

Optical fibers that can 'feel' the materials around them August 7th, 2018

A molecular switch at the edge of graphene July 27th, 2018

Leti & Partners Launch Pilot Program to Assess New Perception Sensors for Autonomous Vehicles July 5th, 2018

Nanoelectronics

Smallest transistor worldwide switches current with a single atom in solid electrolyte: Milestone of energy efficiency in information technology -- Publication in Advanced Materials August 17th, 2018

Flipping the switch on supramolecular electronics August 14th, 2018

Quantum chains in graphene nanoribbons: Breakthrough in nanoresearch August 9th, 2018

Nanotube 'rebar' makes graphene twice as tough: Rice University scientists test material that shows promise for flexible electronics August 3rd, 2018

Discoveries

Novel nanoparticle-based approach detects and treats oral plaque without drugs August 17th, 2018

UVA multidisciplinary engineering team designs technology for smart materials: The invention could lead to devices and manufactured goods, such as fabrics, that can dynamically regulate between thermally insulating and cooling August 17th, 2018

Smallest transistor worldwide switches current with a single atom in solid electrolyte: Milestone of energy efficiency in information technology -- Publication in Advanced Materials August 17th, 2018

Scientists turn to the quantum realm to improve energy transportation August 17th, 2018

Announcements

Novel nanoparticle-based approach detects and treats oral plaque without drugs August 17th, 2018

UVA multidisciplinary engineering team designs technology for smart materials: The invention could lead to devices and manufactured goods, such as fabrics, that can dynamically regulate between thermally insulating and cooling August 17th, 2018

Smallest transistor worldwide switches current with a single atom in solid electrolyte: Milestone of energy efficiency in information technology -- Publication in Advanced Materials August 17th, 2018

Scientists turn to the quantum realm to improve energy transportation August 17th, 2018

Research partnerships

UVA multidisciplinary engineering team designs technology for smart materials: The invention could lead to devices and manufactured goods, such as fabrics, that can dynamically regulate between thermally insulating and cooling August 17th, 2018

Breaking down the Wiedemann-Franz law: In a study exploring the coupling between heat and particle currents in a gas of strongly interacting atoms, physicists at ETH Zurich find puzzling behaviours August 10th, 2018

Yale-NUS scientist and collaborators solve open theoretical problem on electron interactions August 10th, 2018

Scientists squeeze nanocrystals in a liquid droplet into a solid-like state and back again: Simple chemical technique transforms crystal mixture where 2 liquids meet August 9th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project