Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers love triangles: Shaped catalysts spark longer, faster-growing, rule-breaking nanowires

Abstract:
A research team at Case Western Reserve University has found that gold catalysts shaped in the form of a cube, triangle, or other higher order structures grow nanowires about twice as fast and twice as long compared to wires grown with the more typical spherically-shaped catalysts.

Researchers love triangles: Shaped catalysts spark longer, faster-growing, rule-breaking nanowires

Cleveland, OH | Posted on June 6th, 2012

This finding could prove useful to other scientists who are growing nanowires to build sensors fast enough to detect changes in red and white blood cells. These sensors in turn could help identify various forms of cancer in the body. The wires are so small - as small as one-5,000th the width of a human hair - they could also be used to build the next generation of "invisible" computer chips.

Xuan Gao, assistant professor of physics, and R. Mohan Sankaran, associate professor of chemical engineering, describe their work in the paper, "Shape-Controlled Au Particles for InAs Nanowire Growth," published in the journal Nano Letters.

Their research team included Case Western Reserve graduate students Pin Ann Lin and Dong Liang and Hathaway Brown Upper School student Samantha Reeves.

The researchers tested growth using both the preferentially-shaped and spherical catalysts under identical conditions to rule out error in the comparisons.

They suggest that the long accepted model of vapor-liquid-solid, or VLS, growth is incomplete, and that more tests are needed in order to fully understand the process.

Here's why: the researchers found that that the nanowires grown with the triangular catalyst have a much thicker layer of the metal Indium than the VLS nanowire growth model predicts.

The finding suggests a correlation between Indium concentration and growth enhancement. The team made the discovery when they beamed electrons at the nanowires to release high energy x-rays, a process called energy-dispersive X-ray spectroscopy. The magnitude of these energy bursts were used to determine chemical properties of the nanowires.

To grow nanowires, the researchers combined elements such as indium and arsenic, from rows 4 and 5 of the periodic table of elements. Elements from these rows bond to the gold particle to create a semiconductor that neither allows great flow of electric current nor greatly prevents its flow. This is called the "bottom-up method" which Gao describes as truly like "growing a plant from a seed."

Nanowires can also be made "top-down" with precise cuts on a large piece of semiconducting material, reducing it to a tiny structure of wires.

The disadvantage to this, Sankaran explains, is that cutting wires smaller than around 45 nm, which is the current standard in computer chips, "is impossible if we are using a machine. But if we were to grow the wires from chemical compounds we could make them as small as 10 nm, meaning we could fit more wires in a smaller space for greater speed."

However the bottom-up method only produces wires in bunches as opposed to the large interwoven structures made from the top-down method of cutting. The challenge is combining chemically-grown wires in ways that they work in complex electronics such as computer chips or highly-sensitive sensors.

Both Gao and Sankaran describe their research efforts as truly collaborative. Sankaran makes catalysts of different shapes to grow the nanowires, and Gao tests the properties of these wires and connects them to possible uses in the field.

This duo plans to continue exploring the correlation between catalyst shape and other structural characteristics of the wires in order to further develop the VLS model, and move closer to implementing nanowires in new technology.

Release prepared by Sean Linden, an undergraduate student at Case Western Reserve.

####

For more information, please click here

Contacts:
Kevin Mayhood

216-368-4442

Copyright © Case Western Reserve University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Sensors

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

A color-based sensor to emulate skin's sensitivity: In a step toward more autonomous soft robots and wearable technologies, EPFL researchers have created a device that uses color to simultaneously sense multiple mechanical and temperature stimuli December 8th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Research partnerships

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project