Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanoparticles seek and destroy groundwater toxins

Dr Denis O'Carroll and colleagues at groundwater test site in Ontario, Canada
Dr Denis O'Carroll and colleagues at groundwater test site in Ontario, Canada

Abstract:
Iron nanoparticles encapsulated in a rust-preventing polymer coating could hold incredible potential for cleaning up groundwater contaminated with toxic chemicals, a leading water expert says.

Nanoparticles seek and destroy groundwater toxins

Sydney, Australia | Posted on June 4th, 2012

Hundreds of sites around Sydney where soils have been contaminated from past industrial waste, landfills and gas leaks are known to exist, including the former HMAS Platypus submarine base in Neutral Bay and the Orica site in Botany Bay.

"Toxic contamination of soils is an historical problem," says Dr Denis O'Carroll, a visiting academic at the UNSW Water Research Lab. "Until the 1970s, people wrongly believed that if we put these toxins into the ground they would simply disappear - that the subsurface would act as a natural filtration unit."

"The possibility of this waste polluting the environment, and potentially contaminating groundwater sources and remaining there for decades was ignored," he says.

Far from magically disappearing, chemical contaminants from spilled gas and solvents, when not directly polluting surface waters, seep down into the earth, travelling through microscopic soil cracks, where they accumulate and can eventually reach the groundwater table.

Traditional clean-up methods have focussed on pumping out the contaminated water or flushing out toxins with a specially designed cleansing solution, but these are limited by difficulties in accurately pinpointing and accessing locations where contamination has occurred, says O'Carroll.

His approach is to tackle toxic contaminants with nanotechnology. O'Carroll, who is visiting UNSW from the University of Western Ontario in Canada, has been trialling an innovative new groundwater clean-up technology using metal nanoparticles 500 to 5,000 times narrower than a human hair.

The iron particles are injected directly into contaminated soil where they flow to the contaminants and initiate a redox reaction, whereby electrons are transferred between the particle and the pollutant. This reaction changes the oxidation state of the pollutant and diminishes its overall toxicity to safer levels, says O'Carroll.

"The tiny scale of these nanoparticles allows them to move through microscopic flow channels in soil and rock to reach and destroy pollutants that larger particles cannot," says O'Carroll.

In addition, iron nanoparticles are particularly safe for use in the environment as they are not very mobile and dissolve quickly, says O'Carroll. This, in fact, is somewhat of a detriment as it limits the nanoparticles' ability to seek out and degrade toxins.

To optimise the nanoparticles, O'Carroll is experimenting with different formations of iron, and encapsulating the particles in a rust-preventing polymer, which slows the dissolution process and increases their mobility, without any adverse environmental impacts.

Two contaminated sites in Ontario have been used for field trials of the novel technology and "significant degradation of the contaminants at both sites has been observed", says O'Carroll, whose research has been featured on David Suzuki's The Nature of Things.

Dr O'Carroll will discuss his research on Tuesday June 5 at Manly Council Chambers at 7pm as part of World Environment Day celebrations. It is free and open to the public but bookings are essential. To book, ring the Manly Environment Centre on 9976 2842 during business hours.

####

For more information, please click here

Contacts:
Media Contact:
Dr Denis O’Carroll
0458 366 243


Myles Gough
UNSW Media Office
02 9385 1933

Copyright © University of New South Wales

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

Nanocatalysis for organic chemistry: This research article by Dr. Qien Xu et al. is published in Current Organic Chemistry, Volume 20, Issue 19, 2016 August 30th, 2016

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Discoveries

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

Nanocatalysis for organic chemistry: This research article by Dr. Qien Xu et al. is published in Current Organic Chemistry, Volume 20, Issue 19, 2016 August 30th, 2016

Meteorite impact on a nano scale August 29th, 2016

Announcements

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

Nanocatalysis for organic chemistry: This research article by Dr. Qien Xu et al. is published in Current Organic Chemistry, Volume 20, Issue 19, 2016 August 30th, 2016

Meteorite impact on a nano scale August 29th, 2016

Environment

Nanofur for oil spill cleanup: Materials researchers learn from aquatic ferns: Hairy plant leaves are highly oil-absorbing / publication in bioinspiration & biomimetics / video on absorption capacity August 25th, 2016

Researchers watch catalysts at work August 19th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

SLAC, Stanford gadget grabs more solar energy to disinfect water faster: Plopped into water, a tiny device triggers the formation of chemicals that kill microbes in minutes August 15th, 2016

Water

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

SLAC, Stanford gadget grabs more solar energy to disinfect water faster: Plopped into water, a tiny device triggers the formation of chemicals that kill microbes in minutes August 15th, 2016

New method for making green LEDs enhances their efficiency and brightness July 30th, 2016

Dirty to drinkable: Engineers develop novel hybrid nanomaterials to transform water July 28th, 2016

Events/Classes

Stretchy supercapacitors power wearable electronics August 25th, 2016

Semblant to Present at China Mobile Manufacturing Forum 2016 August 25th, 2016

Nanoparticles that speed blood clotting may someday save lives August 23rd, 2016

Impressive List of Doctors, Scientists Coming to Vail for Scientific Summit: The Second Vail Scientific Summit Convenes the Greatest Minds in Regenerative Medicine and Science August 17th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic