Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanoparticles seek and destroy groundwater toxins

Dr Denis O'Carroll and colleagues at groundwater test site in Ontario, Canada
Dr Denis O'Carroll and colleagues at groundwater test site in Ontario, Canada

Abstract:
Iron nanoparticles encapsulated in a rust-preventing polymer coating could hold incredible potential for cleaning up groundwater contaminated with toxic chemicals, a leading water expert says.

Nanoparticles seek and destroy groundwater toxins

Sydney, Australia | Posted on June 4th, 2012

Hundreds of sites around Sydney where soils have been contaminated from past industrial waste, landfills and gas leaks are known to exist, including the former HMAS Platypus submarine base in Neutral Bay and the Orica site in Botany Bay.

"Toxic contamination of soils is an historical problem," says Dr Denis O'Carroll, a visiting academic at the UNSW Water Research Lab. "Until the 1970s, people wrongly believed that if we put these toxins into the ground they would simply disappear - that the subsurface would act as a natural filtration unit."

"The possibility of this waste polluting the environment, and potentially contaminating groundwater sources and remaining there for decades was ignored," he says.

Far from magically disappearing, chemical contaminants from spilled gas and solvents, when not directly polluting surface waters, seep down into the earth, travelling through microscopic soil cracks, where they accumulate and can eventually reach the groundwater table.

Traditional clean-up methods have focussed on pumping out the contaminated water or flushing out toxins with a specially designed cleansing solution, but these are limited by difficulties in accurately pinpointing and accessing locations where contamination has occurred, says O'Carroll.

His approach is to tackle toxic contaminants with nanotechnology. O'Carroll, who is visiting UNSW from the University of Western Ontario in Canada, has been trialling an innovative new groundwater clean-up technology using metal nanoparticles 500 to 5,000 times narrower than a human hair.

The iron particles are injected directly into contaminated soil where they flow to the contaminants and initiate a redox reaction, whereby electrons are transferred between the particle and the pollutant. This reaction changes the oxidation state of the pollutant and diminishes its overall toxicity to safer levels, says O'Carroll.

"The tiny scale of these nanoparticles allows them to move through microscopic flow channels in soil and rock to reach and destroy pollutants that larger particles cannot," says O'Carroll.

In addition, iron nanoparticles are particularly safe for use in the environment as they are not very mobile and dissolve quickly, says O'Carroll. This, in fact, is somewhat of a detriment as it limits the nanoparticles' ability to seek out and degrade toxins.

To optimise the nanoparticles, O'Carroll is experimenting with different formations of iron, and encapsulating the particles in a rust-preventing polymer, which slows the dissolution process and increases their mobility, without any adverse environmental impacts.

Two contaminated sites in Ontario have been used for field trials of the novel technology and "significant degradation of the contaminants at both sites has been observed", says O'Carroll, whose research has been featured on David Suzuki's The Nature of Things.

Dr O'Carroll will discuss his research on Tuesday June 5 at Manly Council Chambers at 7pm as part of World Environment Day celebrations. It is free and open to the public but bookings are essential. To book, ring the Manly Environment Centre on 9976 2842 during business hours.

####

For more information, please click here

Contacts:
Media Contact:
Dr Denis O’Carroll
0458 366 243


Myles Gough
UNSW Media Office
02 9385 1933

Copyright © University of New South Wales

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Discoveries

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Announcements

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Environment

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

Directa Plus in Barcelona to present the innovative project GEnIuS for oil spills clean-up activities: The company has created a graphene-based product for the remediation of water contaminated by oil and hydrocarbons May 21st, 2015

Nano-policing pollution May 13th, 2015

Chemists strike nano-gold: 4 new atomic structures for gold nanoparticle clusters: Research builds upon work by Nobel Prize-winning team from Stanford University April 28th, 2015

Water

Nanosorbent Produced in Iran to Adsorb Tiny Amounts of Aromatic Hydrocarbon from Seawater May 18th, 2015

Iran Unveils New Home-Made Medicines, Nanotechnology Products May 14th, 2015

Plugging up leaky graphene: New technique may enable faster, more durable water filters May 7th, 2015

Production of Industrial Nano-Membrane for Water, Wastewater Purification Device in Iran May 2nd, 2015

Events/Classes

Haydale Named Lead Sponsor for Cambridge Graphene Festival May 22nd, 2015

Aspen Aerogels to Present at the Cowen and Company Technology, Media & Telecom Conference May 21st, 2015

Directa Plus in Barcelona to present the innovative project GEnIuS for oil spills clean-up activities: The company has created a graphene-based product for the remediation of water contaminated by oil and hydrocarbons May 21st, 2015

Nanometrics Announces Live Webcast of Upcoming Investor and Analyst Day May 20th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project