Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Researchers achieve RNA interference, in a lighter package: Pared-down nucleic acid nanoparticle poses less risk of side effects, offers better targeting.

Researchers successfully used this nanoparticle, made from several strands of DNA and RNA, to turn off a gene in tumor cells.
Image: Hyukjin Lee and Ung Hee Lee
Researchers successfully used this nanoparticle, made from several strands of DNA and RNA, to turn off a gene in tumor cells.

Image: Hyukjin Lee and Ung Hee Lee

Abstract:
Using a technique known as "nucleic acid origami," chemical engineers have built tiny particles made out of DNA and RNA that can deliver snippets of RNA directly to tumors, turning off genes expressed in cancer cells.

Researchers achieve RNA interference, in a lighter package: Pared-down nucleic acid nanoparticle poses less risk of side effects, offers better targeting.

Cambridge, MA | Posted on June 4th, 2012

To achieve this type of gene shutdown, known as RNA interference, many researchers have tried with some success to deliver RNA with particles made from polymers or lipids. However, those materials can pose safety risks and are difficult to target, says Daniel Anderson, an associate professor of health sciences and technology and chemical engineering, and a member of the David H. Koch Institute for Integrative Cancer Research at MIT.

The new particles, developed by researchers at MIT, Alnylam Pharmaceuticals and Harvard Medical School, appear to overcome those challenges, Anderson says. Because the particles are made of DNA and RNA, they are biodegradable and pose no threat to the body. They can also be tagged with molecules of folate (vitamin B9) to target the abundance of folate receptors found on some tumors, including those associated with ovarian cancer one of the deadliest, hardest-to-treat cancers.

Anderson is senior author of a paper on the particles appearing in the June 3 issue of Nature Nanotechnology. Lead author of the paper is former MIT postdoc Hyukjin Lee, now an assistant professor at Ewha Womans University in Seoul, South Korea.

Genetic disruption

RNA interference (RNAi), a natural phenomenon that cells use to control their gene expression, has intrigued researchers since its discovery in 1998. Genetic information is normally carried from DNA in the nucleus to ribosomes, cellular structures where proteins are made. Short interfering RNA (siRNA) disrupts this process by binding to the messenger RNA molecules that carry DNA's instructions, destroying them before they reach the ribosome.

siRNA-delivering nanoparticles made of lipids, which Anderson's lab and Alnylam are also developing, have shown some success in turning off cancer genes in animal studies, and clinical trials are now underway in patients with liver cancer. Nanoparticles tend to accumulate in the liver, spleen and lungs, so liver cancer is a natural target but it has been difficult to target such particles to tumors in other organs.

"When you think of metastatic cancer, you don't want to just stop in the liver," Anderson says. "You also want to get to more diverse sites."

Another obstacle to fulfilling the promise of RNAi has been finding ways to deliver the short strands of RNA without harming healthy tissues in the body. To avoid those possible side effects, Anderson and his colleagues decided to try delivering RNA in a simple package made of DNA. Using nucleic acid origami which allows researchers to construct 3-D shapes from short segments of DNA they fused six strands of DNA to create a tetrahedron (a six-edged, four-faced pyramid). A single RNA strand was then affixed to each edge of the tetrahedron.

"What's particularly exciting about nucleic acid origami is the fact that you can make molecularly identical particles and define the location of every single atom," Anderson says.

To target the particles to tumor cells, the researchers attached three folate molecules to each tetrahedron. Short protein fragments could also be used to target the particles to a variety of tumors.

Using nucleic acid origami, the researchers have much more control over the composition of the particles, making it easier to create identical particles that all seek the right target.

Circulate and accumulate

In studies of mice implanted with human tumors, the researchers found that once injected, the nucleic acid nanoparticles circulated in the bloodstream with a half-life of 24 minutes long enough to reach their targets. The DNA tetrahedron appears to protect the RNA from rapid absorption by the kidneys and excretion, which usually happens with RNA administered on its own, Anderson says.

"If you take a short interfering RNA and inject it into the bloodstream, it is typically gone in six minutes. If you make a bigger nanoparticle using origami methods, it increases its ability to avoid excretion through the kidneys, thereby increasing its time circulating in the blood" he says.

The researchers also showed that the nucleic acid nanoparticles accumulated at the tumor sites. The RNA delivered by the particles was designed to target a gene for luciferase, which had been added to the tumor cells to make them glow. They found that in treated mice, luciferase activity dropped by more than half.

The team is now designing nanoparticles to target genes that promote tumor growth, and is also working on shutting off genes involved in other genetic diseases.

The research was funded by the National Institutes of Health, the Center for Cancer Nanotechnology Excellence, Alnylam Pharmaceuticals and the National Research Foundation of Korea.

####

For more information, please click here

Contacts:
Sarah McDonnell
MIT News Office

T: 617-253-8923

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Iranian Researchers Planning to Produce Edible Insulin January 28th, 2015

Nanoparticles that deliver oligonucleotide drugs into cells described in Nucleic Acid Therapeutics January 28th, 2015

'Bulletproof' battery: Kevlar membrane for safer, thinner lithium rechargeables January 28th, 2015

Spider electro-combs its sticky nano-filaments January 28th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Nanoscale Mirrored Cavities Amplify, Connect Quantum Memories: Advance could lead to quantum computing and the secure transfer of information over long-distance fiber optic networks January 28th, 2015

Detecting chemical weapons with a color-changing film January 28th, 2015

'Bulletproof' battery: Kevlar membrane for safer, thinner lithium rechargeables January 28th, 2015

Researchers Make Magnetic Graphene: UC Riverside research could lead to new multi-functional electronic devices January 27th, 2015

Nanomedicine

Iranian Researchers Planning to Produce Edible Insulin January 28th, 2015

Nanoparticles that deliver oligonucleotide drugs into cells described in Nucleic Acid Therapeutics January 28th, 2015

Nanoliposomes Help Efforts to Cure Bacterial Infections January 27th, 2015

Stomach acid-powered micromotors get their first test in a living animal January 27th, 2015

Discoveries

Detecting chemical weapons with a color-changing film January 28th, 2015

Joint international research project leads to a breakthrough in terahertz spectroscopy January 28th, 2015

Iranian Researchers Planning to Produce Edible Insulin January 28th, 2015

Nanoparticles that deliver oligonucleotide drugs into cells described in Nucleic Acid Therapeutics January 28th, 2015

Announcements

Iranian Researchers Planning to Produce Edible Insulin January 28th, 2015

Nanoparticles that deliver oligonucleotide drugs into cells described in Nucleic Acid Therapeutics January 28th, 2015

'Bulletproof' battery: Kevlar membrane for safer, thinner lithium rechargeables January 28th, 2015

Spider electro-combs its sticky nano-filaments January 28th, 2015

Nanobiotechnology

Spider electro-combs its sticky nano-filaments January 28th, 2015

Nanoshuttle wear and tear: It's the mileage, not the age January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

DNA 'glue' could someday be used to build tissues, organs January 14th, 2015

Research partnerships

Carbon nanoballs can greatly contribute to sustainable energy supply January 27th, 2015

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

Promising use of nanodiamonds in delivering cancer drug to kill cancer stem cells: NUS study shows that delivery of Epirubicin by nanodiamonds resulted in a normally lethal dosage of Epirubicin becoming a safe and effective dosage for treatment of liver cancer January 26th, 2015

Wearable sensor clears path to long-term EKG, EMG monitoring January 20th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE