Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Silkmoth inspires novel explosive detector

© Fabien Schnell/NS3E Overall view of a microcantilever nanostructured by aligned titanium dioxide nanotubes.
© Fabien Schnell/NS3E

Overall view of a microcantilever nanostructured by aligned titanium dioxide nanotubes.

Abstract:
Imitating the antennas of the silkmoth, Bombyx mori, to design a system for detecting explosives with unparalleled performance is the feat achieved by a team from the "Nanomatériaux pour Systèmes sous Sollicitations Extrêmes" unit (CNRS / Institut Franco-Allemand de Recherches de Saint-Louis), in collaboration with the Laboratoire des Matériaux, Surfaces et Procédés pour la Catalyse (CNRS / Université de Strasbourg). Made up of a silicon microcantilever bearing nearly 500,000 aligned titanium dioxide nanotubes, this device is capable of detecting concentrations of trinitrotoluene (TNT) of around 800 ppq (1) (i.e. 800 molecules of explosive per 10^15 molecules of air), thereby improving one thousand-fold the detection limit attainable until now. This innovative concept could also be used to detect drugs, toxic agents and traces of organic pollutants. This work is published on 29 May 2012 in the journal Angewandte Chemie.

Silkmoth inspires novel explosive detector

Paris, France | Posted on June 2nd, 2012

The efficient detection of explosives such as trinitrotoluene (TNT) represents a difficult challenge in terms of security. Indeed, these compounds have very low volatility and it takes extremely sensitive sensors to detect them at a distance. Current systems detect concentrations of around 1 ppb (2) (one molecule per 10^9 molecules of air), but this level of performance can be insufficient to ensure airport security for example. Yet, numerous animals have a sense of smell that can go well below this limit including, for example, the silkmoth (Bombyx mori), capable of reacting to the capture of just a few pheromone molecules. Its antennas are composed of strands of around one millimeter in length, bearing a large of number of sensilla, micrometric sized organs directly connected to the sensory neurons. It is this structure that the researchers sought to imitate.

The system that they have developed comprises a 200-micron long and 30-micron wide silicon microcantilever. This support has been nanostructured with around 500,000 vertically aligned titanium dioxide nanotubes. The role of these nanostructures is to multiply the surface area of the microcantilever by a factor of around one hundred and to proportionally increase the chances of capturing the molecules being searched for. By making the microcantilever vibrate, it is possible to determine whether the ambient air contains traces of TNT and if these molecules have been captured by the device. In fact, the microcantilever has a particular resonance frequency that is modified in a specific manner when it absorbs molecules of explosive.

To test the performance of this device, the researchers released very small quantities of TNT in a controlled manner. In this way, there were able to establish that the sensitivity of the device was 800 ppq (800 molecules per million billion molecules (10^15)). No current device is able to detect such low concentrations of explosives. These performance levels are similar to those of trained sniffer dogs.

Research and development work is still necessary before an easy-to-use device based on these nanostructured levers can be obtained. One of the next steps is to design a device capable of specifically recognizing the type of explosive absorbed. The scientists already hope to adapt these microcantilevers to the detection of other explosives, such as pentrite, which could pose security problems in Europe. Furthermore, this method could also be used to detect various drugs which, like explosives, have very low volatility. In environmental terms, this bio-inspired device could make it possible to measure infinitesimal traces of pollutants such as volatile organic compounds, which have become a major health issue.

1) Ppq (parts per quadrillion) is used to measure the abundance of an element.
2) Ppb (parts per billion) represents a concentration of around 10^-9.

Full bibliographic informationBio-Inspired Nanostructured Sensor for the Detection of Ultralow Concentrations of Explosives. D. Spitzer, T. Cottineau, N. Piazzon, S. Josset, F. Schnell, S. N. Pronkin, E. R. Savinova, and V. Keller. Angewandte Chemie. 29 mai 2012.

####

For more information, please click here

Contacts:
Researchers
Denis Spitzer
T +33 (0)3 89 69 50 75


Valérie Keller
T +33 (0)3 68 85 27 36


CNRS press officer
Priscilla Dacher
T +33 (0)1 44 96 46 06 l

Julien Guillaume
+ 33 1 44 96 51 51

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

NUS researchers invent new test kit for quick, accurate and low-cost screening of diseases: Test results are denoted by a color change and could be further analyzed by a smartphone app, making it attractive as a point-of-care diagnostic device September 19th, 2018

Silver nanoparticles are toxic for aquatic organisms: A research team at the UPV/EHU-University of the Basque Country has analysed how zebrafish are affected in the long term by exposure to silver particles September 19th, 2018

Leti Announces EU Project to Develop Powerful, Inexpensive Sensors with Photonic Integrated Circuits: REDFINCH Members Initially Targeting Applications for Gas Detection and Analysis For Refineries & Petrochemical Industry and Protein Analysis for Dairy Industry September 19th, 2018

Discoveries

NUS researchers invent new test kit for quick, accurate and low-cost screening of diseases: Test results are denoted by a color change and could be further analyzed by a smartphone app, making it attractive as a point-of-care diagnostic device September 19th, 2018

Silver nanoparticles are toxic for aquatic organisms: A research team at the UPV/EHU-University of the Basque Country has analysed how zebrafish are affected in the long term by exposure to silver particles September 19th, 2018

Researchers develop microbubble scrubber to destroy dangerous biofilms September 19th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

Announcements

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

NUS researchers invent new test kit for quick, accurate and low-cost screening of diseases: Test results are denoted by a color change and could be further analyzed by a smartphone app, making it attractive as a point-of-care diagnostic device September 19th, 2018

Silver nanoparticles are toxic for aquatic organisms: A research team at the UPV/EHU-University of the Basque Country has analysed how zebrafish are affected in the long term by exposure to silver particles September 19th, 2018

Leti Announces EU Project to Develop Powerful, Inexpensive Sensors with Photonic Integrated Circuits: REDFINCH Members Initially Targeting Applications for Gas Detection and Analysis For Refineries & Petrochemical Industry and Protein Analysis for Dairy Industry September 19th, 2018

Homeland Security

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

The dispute about the origins of terahertz photoresponse in graphene results in a draw April 26th, 2018

Military

Ultracold atoms used to verify 1963 prediction about 1D electrons: Rice University, University of Geneva study focuses on theory that's increasingly relevant to chipmakers September 5th, 2018

Neutrophil nanosponges soak up proteins that promote rheumatoid arthritis September 3rd, 2018

Virginia Tech researchers develop novel process to 3D print one of the strongest materials on Earth August 23rd, 2018

Biomimetic micro/nanoscale fiber reinforced composites August 10th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project