Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > X-ray laser resolves atomic structure of biomolecules

This rendering shows a lysozyme structural model against its X-ray diffraction patter from SLAC's Linac Coherent Light Source (LCLS), a powerful X-ray laser facility.
Photo by: Anton Barty/DESY
This rendering shows a lysozyme structural model against its X-ray diffraction patter from SLAC's Linac Coherent Light Source (LCLS), a powerful X-ray laser facility.

Photo by: Anton Barty/DESY

Abstract:
An international team, led by the U.S. Department of Energy's SLAC National Accelerator Laboratory and including members from Arizona State University, has shown how the world's most powerful X-ray laser can assist in cracking the atomic code of biomolecules, including a small protein found in egg whites.

X-ray laser resolves atomic structure of biomolecules

Tempe, AZ | Posted on June 1st, 2012

The team's experiments, described this week in Science, used SLAC's Linac Coherent Light Source (LCLS) to obtain ultrahigh-resolution views of nano-crystals of biomolecules. In the process, the work is helping pioneer critical new investigative avenues in biology.

"This work demonstrates a new 'snap-shot' X-ray laser method that can provide atomic-resolution images of proteins with femtosecond time resolution and without causing radiation damage of the sample," said John Spence, an ASU Regents Professor of physics.

"This is the first high-resolution demonstration of the 'diffraction-before-destruction' technique on biological samples, where we're able to measure a sample before the powerful pulses of the LCLS damage it," added Sébastien Boutet, a staff scientist at LCLS who led the research. "We were able to actually visualize the structure of the molecule at a resolution so high we start to infer the position of individual atoms," Boutet added.

For decades, scientists have reconstructed the shape of biological molecules and proteins by illuminating crystallized samples with X-rays to study how they scatter the X-rays. The new work with lysozyme (egg white protein) represents the first high-resolution experiments employing serial femtosecond crystallography - the split-second imaging of tiny (submicron) crystals using ultrashort, ultrabright X-ray laser pulses. (A femtosecond is one quadrillionth of a second.)

The technique - described in the paper "High-resolution protein structure determination by serial femtosecond crystallography" - works at a higher resolution than previously achieved using X-ray lasers, allows scientists to use smaller crystals than typical with other methods, and could enable researchers to view molecular dynamics at a time-scale never observed before.

The team chose lysozyme as the first sample for their research because it is easy to crystallize and has been extensively studied. Their work determined lysozyme's structure at such high resolution that it showed the individual amino acids which make up the protein molecules, of which living organisms mainly consist. At this resolution, the researchers could tell the difference between the almost identical amino acid sequences of a turkey and of a hen lysozyme.

Spence said the team has previously published the structure of much larger and more complex proteins using LCLS but at lower resolution, such as photosystems used in photosynthesis, which were made at ASU in the laboratory of Prof. Petra Fromme.

International team members in addition to ASU and SLAC includes researchers from Max Planck Institutes, DESY, Cornell University, State University of New York-Oswego, the Applied Physics Laboratory at Johns Hopkins University, the Nikhef National Institute for Subatomic Physics, the European Synchrotron Radiation Facility, University of Gothenburg, University of Hamburg, University of Lübeck and Uppsala University.

In addition to Spence, other ASU members of the team are Bruce Doak, professor of physics; Petra Fromme, professor of chemistry and biochemistry; Uwe Weierstall, research professor in physics; Raimund Fromme, research associate; Richard Kirian, graduate student; Mark Hunter, graduate student; Christopher Kupitz, graduate research assistant; D. Wang, graduate student and Nadia Zatsepin, post-doctoral researcher. The ASU group developed the sample delivery system and did the early development work on the new "Monte Carlo" data analysis method.

"These results show that 3D image of molecules can now be obtained at atomic resolution by our new X-ray snap-shot method, in which we collect the scattering for the image before the sample is later destroyed by the beam," Spence said. "By 'outrunning' radiation-damage processes in this way, rather than by freezing the sample, we can record the time-evolution of molecular processes at room temperature. This opens the way to future experiments on laser-excited samples, 3-D image reconstruction and a host of other experiments on fast imaging, all directed at the grand challenge of obtaining movies showing molecule machines at work."

####

For more information, please click here

Contacts:
Source:
John Spence
(480) 965-6486


Media contact:
Skip Derra

480-965-4823

Copyright © Arizona State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Observation of left and right at nanoscale with optical force October 6th, 2023

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Photonics/Optics/Lasers

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project