Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > X-ray laser resolves atomic structure of biomolecules

This rendering shows a lysozyme structural model against its X-ray diffraction patter from SLAC's Linac Coherent Light Source (LCLS), a powerful X-ray laser facility.
Photo by: Anton Barty/DESY
This rendering shows a lysozyme structural model against its X-ray diffraction patter from SLAC's Linac Coherent Light Source (LCLS), a powerful X-ray laser facility.

Photo by: Anton Barty/DESY

Abstract:
An international team, led by the U.S. Department of Energy's SLAC National Accelerator Laboratory and including members from Arizona State University, has shown how the world's most powerful X-ray laser can assist in cracking the atomic code of biomolecules, including a small protein found in egg whites.

X-ray laser resolves atomic structure of biomolecules

Tempe, AZ | Posted on June 1st, 2012

The team's experiments, described this week in Science, used SLAC's Linac Coherent Light Source (LCLS) to obtain ultrahigh-resolution views of nano-crystals of biomolecules. In the process, the work is helping pioneer critical new investigative avenues in biology.

"This work demonstrates a new 'snap-shot' X-ray laser method that can provide atomic-resolution images of proteins with femtosecond time resolution and without causing radiation damage of the sample," said John Spence, an ASU Regents Professor of physics.

"This is the first high-resolution demonstration of the 'diffraction-before-destruction' technique on biological samples, where we're able to measure a sample before the powerful pulses of the LCLS damage it," added Sébastien Boutet, a staff scientist at LCLS who led the research. "We were able to actually visualize the structure of the molecule at a resolution so high we start to infer the position of individual atoms," Boutet added.

For decades, scientists have reconstructed the shape of biological molecules and proteins by illuminating crystallized samples with X-rays to study how they scatter the X-rays. The new work with lysozyme (egg white protein) represents the first high-resolution experiments employing serial femtosecond crystallography - the split-second imaging of tiny (submicron) crystals using ultrashort, ultrabright X-ray laser pulses. (A femtosecond is one quadrillionth of a second.)

The technique - described in the paper "High-resolution protein structure determination by serial femtosecond crystallography" - works at a higher resolution than previously achieved using X-ray lasers, allows scientists to use smaller crystals than typical with other methods, and could enable researchers to view molecular dynamics at a time-scale never observed before.

The team chose lysozyme as the first sample for their research because it is easy to crystallize and has been extensively studied. Their work determined lysozyme's structure at such high resolution that it showed the individual amino acids which make up the protein molecules, of which living organisms mainly consist. At this resolution, the researchers could tell the difference between the almost identical amino acid sequences of a turkey and of a hen lysozyme.

Spence said the team has previously published the structure of much larger and more complex proteins using LCLS but at lower resolution, such as photosystems used in photosynthesis, which were made at ASU in the laboratory of Prof. Petra Fromme.

International team members in addition to ASU and SLAC includes researchers from Max Planck Institutes, DESY, Cornell University, State University of New York-Oswego, the Applied Physics Laboratory at Johns Hopkins University, the Nikhef National Institute for Subatomic Physics, the European Synchrotron Radiation Facility, University of Gothenburg, University of Hamburg, University of Lübeck and Uppsala University.

In addition to Spence, other ASU members of the team are Bruce Doak, professor of physics; Petra Fromme, professor of chemistry and biochemistry; Uwe Weierstall, research professor in physics; Raimund Fromme, research associate; Richard Kirian, graduate student; Mark Hunter, graduate student; Christopher Kupitz, graduate research assistant; D. Wang, graduate student and Nadia Zatsepin, post-doctoral researcher. The ASU group developed the sample delivery system and did the early development work on the new "Monte Carlo" data analysis method.

"These results show that 3D image of molecules can now be obtained at atomic resolution by our new X-ray snap-shot method, in which we collect the scattering for the image before the sample is later destroyed by the beam," Spence said. "By 'outrunning' radiation-damage processes in this way, rather than by freezing the sample, we can record the time-evolution of molecular processes at room temperature. This opens the way to future experiments on laser-excited samples, 3-D image reconstruction and a host of other experiments on fast imaging, all directed at the grand challenge of obtaining movies showing molecule machines at work."

####

For more information, please click here

Contacts:
Source:
John Spence
(480) 965-6486


Media contact:
Skip Derra

480-965-4823

Copyright © Arizona State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Host-guest nanowires for efficient water splitting and solar energy storage February 7th, 2016

UTHealth research looks at nanotechnology to help prevent preterm birth February 7th, 2016

Graphene is strong, but is it tough? Berkeley Lab scientists find that polycrystalline graphene is not very resistant to fracture February 7th, 2016

Lithium battery catalyst found to harm key soil microorganism February 7th, 2016

Imaging

Cornell researchers create first self-assembled superconductor February 1st, 2016

New record in nanoelectronics at ultralow temperatures January 28th, 2016

LC.300 Series Nanopositioning Controller from nPoint January 28th, 2016

Researchers from the California NanoSystems Institute at UCLA have created a new technique that greatly enhances digital microscopy images January 27th, 2016

Discoveries

Host-guest nanowires for efficient water splitting and solar energy storage February 7th, 2016

UTHealth research looks at nanotechnology to help prevent preterm birth February 7th, 2016

Graphene is strong, but is it tough? Berkeley Lab scientists find that polycrystalline graphene is not very resistant to fracture February 7th, 2016

Lithium battery catalyst found to harm key soil microorganism February 7th, 2016

Announcements

Host-guest nanowires for efficient water splitting and solar energy storage February 7th, 2016

UTHealth research looks at nanotechnology to help prevent preterm birth February 7th, 2016

Graphene is strong, but is it tough? Berkeley Lab scientists find that polycrystalline graphene is not very resistant to fracture February 7th, 2016

Lithium battery catalyst found to harm key soil microorganism February 7th, 2016

Tools

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Cornell researchers create first self-assembled superconductor February 1st, 2016

New record in nanoelectronics at ultralow temperatures January 28th, 2016

LC.300 Series Nanopositioning Controller from nPoint January 28th, 2016

Photonics/Optics/Lasers

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

Scientists guide gold nanoparticles to form 'diamond' superlattices: DNA scaffolds cage and coax nanoparticles into position to form crystalline arrangements that mimic the atomic structure of diamond February 4th, 2016

Nature Materials: Smallest lattice structure worldwide: 3-D lattice with glassy carbon struts and braces of less than 200 nm in diameter has higher specific strength than most solids February 3rd, 2016

Silicon-based metamaterials could bring photonic circuits February 1st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic